Step |
Hyp |
Ref |
Expression |
1 |
|
ply1annig1p.o |
⊢ 𝑂 = ( 𝐸 evalSub1 𝐹 ) |
2 |
|
ply1annig1p.p |
⊢ 𝑃 = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
3 |
|
ply1annig1p.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
4 |
|
ply1annig1p.e |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
5 |
|
ply1annig1p.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
6 |
|
ply1annig1p.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
7 |
|
ply1annig1p.0 |
⊢ 0 = ( 0g ‘ 𝐸 ) |
8 |
|
ply1annig1p.q |
⊢ 𝑄 = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } |
9 |
|
ply1annig1p.k |
⊢ 𝐾 = ( RSpan ‘ 𝑃 ) |
10 |
|
ply1annig1p.g |
⊢ 𝐺 = ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
11 |
|
minplyval.1 |
⊢ 𝑀 = ( 𝐸 minPoly 𝐹 ) |
12 |
4
|
elexd |
⊢ ( 𝜑 → 𝐸 ∈ V ) |
13 |
5
|
elexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
14 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
15 |
14
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
16 |
15
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝐺 ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑥 ) = 0 } ) ) ∈ V ) |
17 |
|
fveq2 |
⊢ ( 𝑒 = 𝐸 → ( Base ‘ 𝑒 ) = ( Base ‘ 𝐸 ) ) |
18 |
17 3
|
eqtr4di |
⊢ ( 𝑒 = 𝐸 → ( Base ‘ 𝑒 ) = 𝐵 ) |
19 |
18
|
adantr |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( Base ‘ 𝑒 ) = 𝐵 ) |
20 |
|
oveq12 |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( 𝑒 ↾s 𝑓 ) = ( 𝐸 ↾s 𝐹 ) ) |
21 |
20
|
fveq2d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( idlGen1p ‘ ( 𝑒 ↾s 𝑓 ) ) = ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
22 |
21 10
|
eqtr4di |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( idlGen1p ‘ ( 𝑒 ↾s 𝑓 ) ) = 𝐺 ) |
23 |
|
oveq12 |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( 𝑒 evalSub1 𝑓 ) = ( 𝐸 evalSub1 𝐹 ) ) |
24 |
23 1
|
eqtr4di |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( 𝑒 evalSub1 𝑓 ) = 𝑂 ) |
25 |
24
|
dmeqd |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → dom ( 𝑒 evalSub1 𝑓 ) = dom 𝑂 ) |
26 |
24
|
fveq1d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑞 ) = ( 𝑂 ‘ 𝑞 ) ) |
27 |
26
|
fveq1d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑞 ) ‘ 𝑥 ) = ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑥 ) ) |
28 |
|
fveq2 |
⊢ ( 𝑒 = 𝐸 → ( 0g ‘ 𝑒 ) = ( 0g ‘ 𝐸 ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( 0g ‘ 𝑒 ) = ( 0g ‘ 𝐸 ) ) |
30 |
29 7
|
eqtr4di |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( 0g ‘ 𝑒 ) = 0 ) |
31 |
27 30
|
eqeq12d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑞 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) ↔ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑥 ) = 0 ) ) |
32 |
25 31
|
rabeqbidv |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → { 𝑞 ∈ dom ( 𝑒 evalSub1 𝑓 ) ∣ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑞 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) } = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑥 ) = 0 } ) |
33 |
22 32
|
fveq12d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( ( idlGen1p ‘ ( 𝑒 ↾s 𝑓 ) ) ‘ { 𝑞 ∈ dom ( 𝑒 evalSub1 𝑓 ) ∣ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑞 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) } ) = ( 𝐺 ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑥 ) = 0 } ) ) |
34 |
19 33
|
mpteq12dv |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( 𝑥 ∈ ( Base ‘ 𝑒 ) ↦ ( ( idlGen1p ‘ ( 𝑒 ↾s 𝑓 ) ) ‘ { 𝑞 ∈ dom ( 𝑒 evalSub1 𝑓 ) ∣ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑞 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) } ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝐺 ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑥 ) = 0 } ) ) ) |
35 |
|
df-minply |
⊢ minPoly = ( 𝑒 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑒 ) ↦ ( ( idlGen1p ‘ ( 𝑒 ↾s 𝑓 ) ) ‘ { 𝑞 ∈ dom ( 𝑒 evalSub1 𝑓 ) ∣ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑞 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) } ) ) ) |
36 |
34 35
|
ovmpoga |
⊢ ( ( 𝐸 ∈ V ∧ 𝐹 ∈ V ∧ ( 𝑥 ∈ 𝐵 ↦ ( 𝐺 ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑥 ) = 0 } ) ) ∈ V ) → ( 𝐸 minPoly 𝐹 ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝐺 ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑥 ) = 0 } ) ) ) |
37 |
12 13 16 36
|
syl3anc |
⊢ ( 𝜑 → ( 𝐸 minPoly 𝐹 ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝐺 ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑥 ) = 0 } ) ) ) |
38 |
11 37
|
eqtrid |
⊢ ( 𝜑 → 𝑀 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐺 ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑥 ) = 0 } ) ) ) |
39 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑥 ) = 0 ↔ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 ) ) |
40 |
39
|
rabbidv |
⊢ ( 𝑥 = 𝐴 → { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑥 ) = 0 } = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } ) |
41 |
40 8
|
eqtr4di |
⊢ ( 𝑥 = 𝐴 → { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑥 ) = 0 } = 𝑄 ) |
42 |
41
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝐺 ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑥 ) = 0 } ) = ( 𝐺 ‘ 𝑄 ) ) |
43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝐺 ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝑥 ) = 0 } ) = ( 𝐺 ‘ 𝑄 ) ) |
44 |
|
fvexd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑄 ) ∈ V ) |
45 |
38 43 6 44
|
fvmptd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = ( 𝐺 ‘ 𝑄 ) ) |