| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cminply |
⊢ minPoly |
| 1 |
|
ve |
⊢ 𝑒 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vf |
⊢ 𝑓 |
| 4 |
|
vx |
⊢ 𝑥 |
| 5 |
|
cbs |
⊢ Base |
| 6 |
1
|
cv |
⊢ 𝑒 |
| 7 |
6 5
|
cfv |
⊢ ( Base ‘ 𝑒 ) |
| 8 |
|
cig1p |
⊢ idlGen1p |
| 9 |
|
cress |
⊢ ↾s |
| 10 |
3
|
cv |
⊢ 𝑓 |
| 11 |
6 10 9
|
co |
⊢ ( 𝑒 ↾s 𝑓 ) |
| 12 |
11 8
|
cfv |
⊢ ( idlGen1p ‘ ( 𝑒 ↾s 𝑓 ) ) |
| 13 |
|
vp |
⊢ 𝑝 |
| 14 |
|
ces1 |
⊢ evalSub1 |
| 15 |
6 10 14
|
co |
⊢ ( 𝑒 evalSub1 𝑓 ) |
| 16 |
15
|
cdm |
⊢ dom ( 𝑒 evalSub1 𝑓 ) |
| 17 |
13
|
cv |
⊢ 𝑝 |
| 18 |
17 15
|
cfv |
⊢ ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) |
| 19 |
4
|
cv |
⊢ 𝑥 |
| 20 |
19 18
|
cfv |
⊢ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) |
| 21 |
|
c0g |
⊢ 0g |
| 22 |
6 21
|
cfv |
⊢ ( 0g ‘ 𝑒 ) |
| 23 |
20 22
|
wceq |
⊢ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) |
| 24 |
23 13 16
|
crab |
⊢ { 𝑝 ∈ dom ( 𝑒 evalSub1 𝑓 ) ∣ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) } |
| 25 |
24 12
|
cfv |
⊢ ( ( idlGen1p ‘ ( 𝑒 ↾s 𝑓 ) ) ‘ { 𝑝 ∈ dom ( 𝑒 evalSub1 𝑓 ) ∣ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) } ) |
| 26 |
4 7 25
|
cmpt |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑒 ) ↦ ( ( idlGen1p ‘ ( 𝑒 ↾s 𝑓 ) ) ‘ { 𝑝 ∈ dom ( 𝑒 evalSub1 𝑓 ) ∣ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) } ) ) |
| 27 |
1 3 2 2 26
|
cmpo |
⊢ ( 𝑒 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑒 ) ↦ ( ( idlGen1p ‘ ( 𝑒 ↾s 𝑓 ) ) ‘ { 𝑝 ∈ dom ( 𝑒 evalSub1 𝑓 ) ∣ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) } ) ) ) |
| 28 |
0 27
|
wceq |
⊢ minPoly = ( 𝑒 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑒 ) ↦ ( ( idlGen1p ‘ ( 𝑒 ↾s 𝑓 ) ) ‘ { 𝑝 ∈ dom ( 𝑒 evalSub1 𝑓 ) ∣ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) } ) ) ) |