Metamath Proof Explorer


Definition df-minply

Description: Define the minimal polynomial builder function. (Contributed by Thierry Arnoux, 19-Jan-2025)

Ref Expression
Assertion df-minply minPoly = ( 𝑒 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑒 ) ↦ ( ( idlGen1p ‘ ( 𝑒s 𝑓 ) ) ‘ { 𝑝 ∈ dom ( 𝑒 evalSub1 𝑓 ) ∣ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g𝑒 ) } ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cminply minPoly
1 ve 𝑒
2 cvv V
3 vf 𝑓
4 vx 𝑥
5 cbs Base
6 1 cv 𝑒
7 6 5 cfv ( Base ‘ 𝑒 )
8 cig1p idlGen1p
9 cress s
10 3 cv 𝑓
11 6 10 9 co ( 𝑒s 𝑓 )
12 11 8 cfv ( idlGen1p ‘ ( 𝑒s 𝑓 ) )
13 vp 𝑝
14 ces1 evalSub1
15 6 10 14 co ( 𝑒 evalSub1 𝑓 )
16 15 cdm dom ( 𝑒 evalSub1 𝑓 )
17 13 cv 𝑝
18 17 15 cfv ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 )
19 4 cv 𝑥
20 19 18 cfv ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 )
21 c0g 0g
22 6 21 cfv ( 0g𝑒 )
23 20 22 wceq ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g𝑒 )
24 23 13 16 crab { 𝑝 ∈ dom ( 𝑒 evalSub1 𝑓 ) ∣ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g𝑒 ) }
25 24 12 cfv ( ( idlGen1p ‘ ( 𝑒s 𝑓 ) ) ‘ { 𝑝 ∈ dom ( 𝑒 evalSub1 𝑓 ) ∣ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g𝑒 ) } )
26 4 7 25 cmpt ( 𝑥 ∈ ( Base ‘ 𝑒 ) ↦ ( ( idlGen1p ‘ ( 𝑒s 𝑓 ) ) ‘ { 𝑝 ∈ dom ( 𝑒 evalSub1 𝑓 ) ∣ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g𝑒 ) } ) )
27 1 3 2 2 26 cmpo ( 𝑒 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑒 ) ↦ ( ( idlGen1p ‘ ( 𝑒s 𝑓 ) ) ‘ { 𝑝 ∈ dom ( 𝑒 evalSub1 𝑓 ) ∣ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g𝑒 ) } ) ) )
28 0 27 wceq minPoly = ( 𝑒 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑒 ) ↦ ( ( idlGen1p ‘ ( 𝑒s 𝑓 ) ) ‘ { 𝑝 ∈ dom ( 𝑒 evalSub1 𝑓 ) ∣ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g𝑒 ) } ) ) )