Step |
Hyp |
Ref |
Expression |
0 |
|
cminply |
⊢ minPoly |
1 |
|
ve |
⊢ 𝑒 |
2 |
|
cvv |
⊢ V |
3 |
|
vf |
⊢ 𝑓 |
4 |
|
vx |
⊢ 𝑥 |
5 |
|
cbs |
⊢ Base |
6 |
1
|
cv |
⊢ 𝑒 |
7 |
6 5
|
cfv |
⊢ ( Base ‘ 𝑒 ) |
8 |
|
cig1p |
⊢ idlGen1p |
9 |
|
cress |
⊢ ↾s |
10 |
3
|
cv |
⊢ 𝑓 |
11 |
6 10 9
|
co |
⊢ ( 𝑒 ↾s 𝑓 ) |
12 |
11 8
|
cfv |
⊢ ( idlGen1p ‘ ( 𝑒 ↾s 𝑓 ) ) |
13 |
|
vp |
⊢ 𝑝 |
14 |
|
ces1 |
⊢ evalSub1 |
15 |
6 10 14
|
co |
⊢ ( 𝑒 evalSub1 𝑓 ) |
16 |
15
|
cdm |
⊢ dom ( 𝑒 evalSub1 𝑓 ) |
17 |
13
|
cv |
⊢ 𝑝 |
18 |
17 15
|
cfv |
⊢ ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) |
19 |
4
|
cv |
⊢ 𝑥 |
20 |
19 18
|
cfv |
⊢ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) |
21 |
|
c0g |
⊢ 0g |
22 |
6 21
|
cfv |
⊢ ( 0g ‘ 𝑒 ) |
23 |
20 22
|
wceq |
⊢ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) |
24 |
23 13 16
|
crab |
⊢ { 𝑝 ∈ dom ( 𝑒 evalSub1 𝑓 ) ∣ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) } |
25 |
24 12
|
cfv |
⊢ ( ( idlGen1p ‘ ( 𝑒 ↾s 𝑓 ) ) ‘ { 𝑝 ∈ dom ( 𝑒 evalSub1 𝑓 ) ∣ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) } ) |
26 |
4 7 25
|
cmpt |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑒 ) ↦ ( ( idlGen1p ‘ ( 𝑒 ↾s 𝑓 ) ) ‘ { 𝑝 ∈ dom ( 𝑒 evalSub1 𝑓 ) ∣ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) } ) ) |
27 |
1 3 2 2 26
|
cmpo |
⊢ ( 𝑒 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑒 ) ↦ ( ( idlGen1p ‘ ( 𝑒 ↾s 𝑓 ) ) ‘ { 𝑝 ∈ dom ( 𝑒 evalSub1 𝑓 ) ∣ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) } ) ) ) |
28 |
0 27
|
wceq |
⊢ minPoly = ( 𝑒 ∈ V , 𝑓 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑒 ) ↦ ( ( idlGen1p ‘ ( 𝑒 ↾s 𝑓 ) ) ‘ { 𝑝 ∈ dom ( 𝑒 evalSub1 𝑓 ) ∣ ( ( ( 𝑒 evalSub1 𝑓 ) ‘ 𝑝 ) ‘ 𝑥 ) = ( 0g ‘ 𝑒 ) } ) ) ) |