Step |
Hyp |
Ref |
Expression |
1 |
|
ply1annig1p.o |
⊢ 𝑂 = ( 𝐸 evalSub1 𝐹 ) |
2 |
|
ply1annig1p.p |
⊢ 𝑃 = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
3 |
|
ply1annig1p.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
4 |
|
ply1annig1p.e |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
5 |
|
ply1annig1p.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
6 |
|
ply1annig1p.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
7 |
|
ply1annig1p.0 |
⊢ 0 = ( 0g ‘ 𝐸 ) |
8 |
|
ply1annig1p.q |
⊢ 𝑄 = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = 0 } |
9 |
|
ply1annig1p.k |
⊢ 𝐾 = ( RSpan ‘ 𝑃 ) |
10 |
|
ply1annig1p.g |
⊢ 𝐺 = ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
11 |
|
minplyval.1 |
⊢ 𝑀 = ( 𝐸 minPoly 𝐹 ) |
12 |
1 2 3 4 5 6 7 8 9 10 11
|
minplyval |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = ( 𝐺 ‘ 𝑄 ) ) |
13 |
4
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
14 |
|
issdrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ↔ ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) ) |
15 |
5 14
|
sylib |
⊢ ( 𝜑 → ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) ) |
16 |
15
|
simp2d |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
17 |
1 2 3 13 16 6 7 8
|
ply1annidl |
⊢ ( 𝜑 → 𝑄 ∈ ( LIdeal ‘ 𝑃 ) ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
19 |
|
eqid |
⊢ ( LIdeal ‘ 𝑃 ) = ( LIdeal ‘ 𝑃 ) |
20 |
18 19
|
lidlss |
⊢ ( 𝑄 ∈ ( LIdeal ‘ 𝑃 ) → 𝑄 ⊆ ( Base ‘ 𝑃 ) ) |
21 |
17 20
|
syl |
⊢ ( 𝜑 → 𝑄 ⊆ ( Base ‘ 𝑃 ) ) |
22 |
15
|
simp3d |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) |
23 |
2 10 19
|
ig1pcl |
⊢ ( ( ( 𝐸 ↾s 𝐹 ) ∈ DivRing ∧ 𝑄 ∈ ( LIdeal ‘ 𝑃 ) ) → ( 𝐺 ‘ 𝑄 ) ∈ 𝑄 ) |
24 |
22 17 23
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑄 ) ∈ 𝑄 ) |
25 |
21 24
|
sseldd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑄 ) ∈ ( Base ‘ 𝑃 ) ) |
26 |
12 25
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ) |