Metamath Proof Explorer


Theorem minplycl

Description: The minimal polynomial is a polynomial. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses ply1annig1p.o 𝑂 = ( 𝐸 evalSub1 𝐹 )
ply1annig1p.p 𝑃 = ( Poly1 ‘ ( 𝐸s 𝐹 ) )
ply1annig1p.b 𝐵 = ( Base ‘ 𝐸 )
ply1annig1p.e ( 𝜑𝐸 ∈ Field )
ply1annig1p.f ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐸 ) )
ply1annig1p.a ( 𝜑𝐴𝐵 )
ply1annig1p.0 0 = ( 0g𝐸 )
ply1annig1p.q 𝑄 = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = 0 }
ply1annig1p.k 𝐾 = ( RSpan ‘ 𝑃 )
ply1annig1p.g 𝐺 = ( idlGen1p ‘ ( 𝐸s 𝐹 ) )
minplyval.1 𝑀 = ( 𝐸 minPoly 𝐹 )
Assertion minplycl ( 𝜑 → ( 𝑀𝐴 ) ∈ ( Base ‘ 𝑃 ) )

Proof

Step Hyp Ref Expression
1 ply1annig1p.o 𝑂 = ( 𝐸 evalSub1 𝐹 )
2 ply1annig1p.p 𝑃 = ( Poly1 ‘ ( 𝐸s 𝐹 ) )
3 ply1annig1p.b 𝐵 = ( Base ‘ 𝐸 )
4 ply1annig1p.e ( 𝜑𝐸 ∈ Field )
5 ply1annig1p.f ( 𝜑𝐹 ∈ ( SubDRing ‘ 𝐸 ) )
6 ply1annig1p.a ( 𝜑𝐴𝐵 )
7 ply1annig1p.0 0 = ( 0g𝐸 )
8 ply1annig1p.q 𝑄 = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂𝑞 ) ‘ 𝐴 ) = 0 }
9 ply1annig1p.k 𝐾 = ( RSpan ‘ 𝑃 )
10 ply1annig1p.g 𝐺 = ( idlGen1p ‘ ( 𝐸s 𝐹 ) )
11 minplyval.1 𝑀 = ( 𝐸 minPoly 𝐹 )
12 1 2 3 4 5 6 7 8 9 10 11 minplyval ( 𝜑 → ( 𝑀𝐴 ) = ( 𝐺𝑄 ) )
13 4 fldcrngd ( 𝜑𝐸 ∈ CRing )
14 issdrg ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ↔ ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸s 𝐹 ) ∈ DivRing ) )
15 5 14 sylib ( 𝜑 → ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸s 𝐹 ) ∈ DivRing ) )
16 15 simp2d ( 𝜑𝐹 ∈ ( SubRing ‘ 𝐸 ) )
17 1 2 3 13 16 6 7 8 ply1annidl ( 𝜑𝑄 ∈ ( LIdeal ‘ 𝑃 ) )
18 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
19 eqid ( LIdeal ‘ 𝑃 ) = ( LIdeal ‘ 𝑃 )
20 18 19 lidlss ( 𝑄 ∈ ( LIdeal ‘ 𝑃 ) → 𝑄 ⊆ ( Base ‘ 𝑃 ) )
21 17 20 syl ( 𝜑𝑄 ⊆ ( Base ‘ 𝑃 ) )
22 15 simp3d ( 𝜑 → ( 𝐸s 𝐹 ) ∈ DivRing )
23 2 10 19 ig1pcl ( ( ( 𝐸s 𝐹 ) ∈ DivRing ∧ 𝑄 ∈ ( LIdeal ‘ 𝑃 ) ) → ( 𝐺𝑄 ) ∈ 𝑄 )
24 22 17 23 syl2anc ( 𝜑 → ( 𝐺𝑄 ) ∈ 𝑄 )
25 21 24 sseldd ( 𝜑 → ( 𝐺𝑄 ) ∈ ( Base ‘ 𝑃 ) )
26 12 25 eqeltrd ( 𝜑 → ( 𝑀𝐴 ) ∈ ( Base ‘ 𝑃 ) )