Metamath Proof Explorer


Theorem minplycl

Description: The minimal polynomial is a polynomial. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses ply1annig1p.o O=EevalSub1F
ply1annig1p.p P=Poly1E𝑠F
ply1annig1p.b B=BaseE
ply1annig1p.e φEField
ply1annig1p.f φFSubDRingE
ply1annig1p.a φAB
ply1annig1p.0 0˙=0E
ply1annig1p.q Q=qdomO|OqA=0˙
ply1annig1p.k K=RSpanP
ply1annig1p.g G=idlGen1pE𝑠F
minplyval.1 No typesetting found for |- M = ( E minPoly F ) with typecode |-
Assertion minplycl φMABaseP

Proof

Step Hyp Ref Expression
1 ply1annig1p.o O=EevalSub1F
2 ply1annig1p.p P=Poly1E𝑠F
3 ply1annig1p.b B=BaseE
4 ply1annig1p.e φEField
5 ply1annig1p.f φFSubDRingE
6 ply1annig1p.a φAB
7 ply1annig1p.0 0˙=0E
8 ply1annig1p.q Q=qdomO|OqA=0˙
9 ply1annig1p.k K=RSpanP
10 ply1annig1p.g G=idlGen1pE𝑠F
11 minplyval.1 Could not format M = ( E minPoly F ) : No typesetting found for |- M = ( E minPoly F ) with typecode |-
12 1 2 3 4 5 6 7 8 9 10 11 minplyval φMA=GQ
13 4 fldcrngd φECRing
14 issdrg FSubDRingEEDivRingFSubRingEE𝑠FDivRing
15 5 14 sylib φEDivRingFSubRingEE𝑠FDivRing
16 15 simp2d φFSubRingE
17 1 2 3 13 16 6 7 8 ply1annidl φQLIdealP
18 eqid BaseP=BaseP
19 eqid LIdealP=LIdealP
20 18 19 lidlss QLIdealPQBaseP
21 17 20 syl φQBaseP
22 15 simp3d φE𝑠FDivRing
23 2 10 19 ig1pcl E𝑠FDivRingQLIdealPGQQ
24 22 17 23 syl2anc φGQQ
25 21 24 sseldd φGQBaseP
26 12 25 eqeltrd φMABaseP