Metamath Proof Explorer


Theorem minplycl

Description: The minimal polynomial is a polynomial. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses ply1annig1p.o O = E evalSub 1 F
ply1annig1p.p P = Poly 1 E 𝑠 F
ply1annig1p.b B = Base E
ply1annig1p.e φ E Field
ply1annig1p.f φ F SubDRing E
ply1annig1p.a φ A B
ply1annig1p.0 0 ˙ = 0 E
ply1annig1p.q Q = q dom O | O q A = 0 ˙
ply1annig1p.k K = RSpan P
ply1annig1p.g G = idlGen 1p E 𝑠 F
minplyval.1 M = E minPoly F
Assertion minplycl φ M A Base P

Proof

Step Hyp Ref Expression
1 ply1annig1p.o O = E evalSub 1 F
2 ply1annig1p.p P = Poly 1 E 𝑠 F
3 ply1annig1p.b B = Base E
4 ply1annig1p.e φ E Field
5 ply1annig1p.f φ F SubDRing E
6 ply1annig1p.a φ A B
7 ply1annig1p.0 0 ˙ = 0 E
8 ply1annig1p.q Q = q dom O | O q A = 0 ˙
9 ply1annig1p.k K = RSpan P
10 ply1annig1p.g G = idlGen 1p E 𝑠 F
11 minplyval.1 M = E minPoly F
12 1 2 3 4 5 6 7 8 9 10 11 minplyval φ M A = G Q
13 4 fldcrngd φ E CRing
14 issdrg F SubDRing E E DivRing F SubRing E E 𝑠 F DivRing
15 5 14 sylib φ E DivRing F SubRing E E 𝑠 F DivRing
16 15 simp2d φ F SubRing E
17 1 2 3 13 16 6 7 8 ply1annidl φ Q LIdeal P
18 eqid Base P = Base P
19 eqid LIdeal P = LIdeal P
20 18 19 lidlss Q LIdeal P Q Base P
21 17 20 syl φ Q Base P
22 15 simp3d φ E 𝑠 F DivRing
23 2 10 19 ig1pcl E 𝑠 F DivRing Q LIdeal P G Q Q
24 22 17 23 syl2anc φ G Q Q
25 21 24 sseldd φ G Q Base P
26 12 25 eqeltrd φ M A Base P