Description: Define a choice function for generators of ideals over a division ring; this is the unique monic polynomial of minimal degree in the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015) (Revised by AV, 25-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | df-ig1p | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cig1p | |
|
1 | vr | |
|
2 | cvv | |
|
3 | vi | |
|
4 | clidl | |
|
5 | cpl1 | |
|
6 | 1 | cv | |
7 | 6 5 | cfv | |
8 | 7 4 | cfv | |
9 | 3 | cv | |
10 | c0g | |
|
11 | 7 10 | cfv | |
12 | 11 | csn | |
13 | 9 12 | wceq | |
14 | vg | |
|
15 | cmn1 | |
|
16 | 6 15 | cfv | |
17 | 9 16 | cin | |
18 | cdg1 | |
|
19 | 6 18 | cfv | |
20 | 14 | cv | |
21 | 20 19 | cfv | |
22 | 9 12 | cdif | |
23 | 19 22 | cima | |
24 | cr | |
|
25 | clt | |
|
26 | 23 24 25 | cinf | |
27 | 21 26 | wceq | |
28 | 27 14 17 | crio | |
29 | 13 11 28 | cif | |
30 | 3 8 29 | cmpt | |
31 | 1 2 30 | cmpt | |
32 | 0 31 | wceq | |