Metamath Proof Explorer


Definition df-ig1p

Description: Define a choice function for generators of ideals over a division ring; this is the unique monic polynomial of minimal degree in the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015) (Revised by AV, 25-Sep-2020)

Ref Expression
Assertion df-ig1p idlGen1p=rViLIdealPoly1rifi=0Poly1r0Poly1rιgiMonic1pr|deg1rg=supdeg1ri0Poly1r<

Detailed syntax breakdown

Step Hyp Ref Expression
0 cig1p classidlGen1p
1 vr setvarr
2 cvv classV
3 vi setvari
4 clidl classLIdeal
5 cpl1 classPoly1
6 1 cv setvarr
7 6 5 cfv classPoly1r
8 7 4 cfv classLIdealPoly1r
9 3 cv setvari
10 c0g class0𝑔
11 7 10 cfv class0Poly1r
12 11 csn class0Poly1r
13 9 12 wceq wffi=0Poly1r
14 vg setvarg
15 cmn1 classMonic1p
16 6 15 cfv classMonic1pr
17 9 16 cin classiMonic1pr
18 cdg1 classdeg1
19 6 18 cfv classdeg1r
20 14 cv setvarg
21 20 19 cfv classdeg1rg
22 9 12 cdif classi0Poly1r
23 19 22 cima classdeg1ri0Poly1r
24 cr class
25 clt class<
26 23 24 25 cinf classsupdeg1ri0Poly1r<
27 21 26 wceq wffdeg1rg=supdeg1ri0Poly1r<
28 27 14 17 crio classιgiMonic1pr|deg1rg=supdeg1ri0Poly1r<
29 13 11 28 cif classifi=0Poly1r0Poly1rιgiMonic1pr|deg1rg=supdeg1ri0Poly1r<
30 3 8 29 cmpt classiLIdealPoly1rifi=0Poly1r0Poly1rιgiMonic1pr|deg1rg=supdeg1ri0Poly1r<
31 1 2 30 cmpt classrViLIdealPoly1rifi=0Poly1r0Poly1rιgiMonic1pr|deg1rg=supdeg1ri0Poly1r<
32 0 31 wceq wffidlGen1p=rViLIdealPoly1rifi=0Poly1r0Poly1rιgiMonic1pr|deg1rg=supdeg1ri0Poly1r<