| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1divalg.p |
|
| 2 |
|
ply1divalg.d |
|
| 3 |
|
ply1divalg.b |
|
| 4 |
|
ply1divalg.m |
|
| 5 |
|
ply1divalg.z |
|
| 6 |
|
ply1divalg.t |
|
| 7 |
|
ply1divalg.r1 |
|
| 8 |
|
ply1divalg.f |
|
| 9 |
|
ply1divalg.g1 |
|
| 10 |
|
ply1divalg.g2 |
|
| 11 |
|
ply1divmo.g3 |
|
| 12 |
|
ply1divmo.e |
|
| 13 |
7
|
adantr |
|
| 14 |
1
|
ply1ring |
|
| 15 |
13 14
|
syl |
|
| 16 |
|
ringgrp |
|
| 17 |
15 16
|
syl |
|
| 18 |
8
|
adantr |
|
| 19 |
9
|
adantr |
|
| 20 |
|
simprl |
|
| 21 |
3 6
|
ringcl |
|
| 22 |
15 19 20 21
|
syl3anc |
|
| 23 |
3 4
|
grpsubcl |
|
| 24 |
17 18 22 23
|
syl3anc |
|
| 25 |
|
simprr |
|
| 26 |
3 6
|
ringcl |
|
| 27 |
15 19 25 26
|
syl3anc |
|
| 28 |
3 4
|
grpsubcl |
|
| 29 |
17 18 27 28
|
syl3anc |
|
| 30 |
3 4
|
grpsubcl |
|
| 31 |
17 24 29 30
|
syl3anc |
|
| 32 |
2 1 3
|
deg1xrcl |
|
| 33 |
31 32
|
syl |
|
| 34 |
2 1 3
|
deg1xrcl |
|
| 35 |
29 34
|
syl |
|
| 36 |
2 1 3
|
deg1xrcl |
|
| 37 |
24 36
|
syl |
|
| 38 |
35 37
|
ifcld |
|
| 39 |
2 1 3
|
deg1xrcl |
|
| 40 |
19 39
|
syl |
|
| 41 |
33 38 40
|
3jca |
|
| 42 |
41
|
adantr |
|
| 43 |
1 2 13 3 4 24 29
|
deg1suble |
|
| 44 |
43
|
adantr |
|
| 45 |
|
xrmaxlt |
|
| 46 |
37 35 40 45
|
syl3anc |
|
| 47 |
46
|
biimpar |
|
| 48 |
44 47
|
jca |
|
| 49 |
|
xrlelttr |
|
| 50 |
42 48 49
|
sylc |
|
| 51 |
50
|
ex |
|
| 52 |
2 1 5 3
|
deg1nn0cl |
|
| 53 |
7 9 10 52
|
syl3anc |
|
| 54 |
53
|
ad2antrr |
|
| 55 |
54
|
nn0red |
|
| 56 |
7
|
ad2antrr |
|
| 57 |
3 4
|
grpsubcl |
|
| 58 |
17 25 20 57
|
syl3anc |
|
| 59 |
58
|
adantr |
|
| 60 |
3 5 4
|
grpsubeq0 |
|
| 61 |
17 25 20 60
|
syl3anc |
|
| 62 |
|
equcom |
|
| 63 |
61 62
|
bitrdi |
|
| 64 |
63
|
necon3bid |
|
| 65 |
64
|
biimpar |
|
| 66 |
2 1 5 3
|
deg1nn0cl |
|
| 67 |
56 59 65 66
|
syl3anc |
|
| 68 |
|
nn0addge1 |
|
| 69 |
55 67 68
|
syl2anc |
|
| 70 |
9
|
ad2antrr |
|
| 71 |
10
|
ad2antrr |
|
| 72 |
11
|
ad2antrr |
|
| 73 |
2 1 12 3 6 5 56 70 71 72 59 65
|
deg1mul2 |
|
| 74 |
69 73
|
breqtrrd |
|
| 75 |
|
ringabl |
|
| 76 |
15 75
|
syl |
|
| 77 |
3 4 76 18 22 27
|
ablnnncan1 |
|
| 78 |
3 6 4 15 19 25 20
|
ringsubdi |
|
| 79 |
77 78
|
eqtr4d |
|
| 80 |
79
|
fveq2d |
|
| 81 |
80
|
adantr |
|
| 82 |
74 81
|
breqtrrd |
|
| 83 |
40 33
|
xrlenltd |
|
| 84 |
83
|
adantr |
|
| 85 |
82 84
|
mpbid |
|
| 86 |
85
|
ex |
|
| 87 |
86
|
necon4ad |
|
| 88 |
51 87
|
syld |
|
| 89 |
88
|
ralrimivva |
|
| 90 |
|
oveq2 |
|
| 91 |
90
|
oveq2d |
|
| 92 |
91
|
fveq2d |
|
| 93 |
92
|
breq1d |
|
| 94 |
93
|
rmo4 |
|
| 95 |
89 94
|
sylibr |
|