Metamath Proof Explorer


Theorem ply1divex

Description: Lemma for ply1divalg : existence part. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses ply1divalg.p P=Poly1R
ply1divalg.d D=deg1R
ply1divalg.b B=BaseP
ply1divalg.m -˙=-P
ply1divalg.z 0˙=0P
ply1divalg.t ˙=P
ply1divalg.r1 φRRing
ply1divalg.f φFB
ply1divalg.g1 φGB
ply1divalg.g2 φG0˙
ply1divex.o 1˙=1R
ply1divex.k K=BaseR
ply1divex.u ·˙=R
ply1divex.i φIK
ply1divex.g3 φcoe1GDG·˙I=1˙
Assertion ply1divex φqBDF-˙G˙q<DG

Proof

Step Hyp Ref Expression
1 ply1divalg.p P=Poly1R
2 ply1divalg.d D=deg1R
3 ply1divalg.b B=BaseP
4 ply1divalg.m -˙=-P
5 ply1divalg.z 0˙=0P
6 ply1divalg.t ˙=P
7 ply1divalg.r1 φRRing
8 ply1divalg.f φFB
9 ply1divalg.g1 φGB
10 ply1divalg.g2 φG0˙
11 ply1divex.o 1˙=1R
12 ply1divex.k K=BaseR
13 ply1divex.u ·˙=R
14 ply1divex.i φIK
15 ply1divex.g3 φcoe1GDG·˙I=1˙
16 fveq2 F=0˙DF=D0˙
17 16 breq1d F=0˙DF<DG+dD0˙<DG+d
18 17 rexbidv F=0˙d0DF<DG+dd0D0˙<DG+d
19 nnssnn0 0
20 7 adantr φF0˙RRing
21 8 adantr φF0˙FB
22 simpr φF0˙F0˙
23 2 1 5 3 deg1nn0cl RRingFBF0˙DF0
24 20 21 22 23 syl3anc φF0˙DF0
25 24 nn0red φF0˙DF
26 2 1 5 3 deg1nn0cl RRingGBG0˙DG0
27 7 9 10 26 syl3anc φDG0
28 27 nn0red φDG
29 28 adantr φF0˙DG
30 25 29 resubcld φF0˙DFDG
31 arch DFDGdDFDG<d
32 30 31 syl φF0˙dDFDG<d
33 ssrexv 0dDFDG<dd0DFDG<d
34 19 32 33 mpsyl φF0˙d0DFDG<d
35 25 adantr φF0˙d0DF
36 28 ad2antrr φF0˙d0DG
37 nn0re d0d
38 37 adantl φF0˙d0d
39 35 36 38 ltsubadd2d φF0˙d0DFDG<dDF<DG+d
40 39 biimpd φF0˙d0DFDG<dDF<DG+d
41 40 reximdva φF0˙d0DFDG<dd0DF<DG+d
42 34 41 mpd φF0˙d0DF<DG+d
43 0nn0 00
44 2 1 5 deg1z RRingD0˙=−∞
45 7 44 syl φD0˙=−∞
46 0re 0
47 readdcl DG0DG+0
48 28 46 47 sylancl φDG+0
49 48 mnfltd φ−∞<DG+0
50 45 49 eqbrtrd φD0˙<DG+0
51 oveq2 d=0DG+d=DG+0
52 51 breq2d d=0D0˙<DG+dD0˙<DG+0
53 52 rspcev 00D0˙<DG+0d0D0˙<DG+d
54 43 50 53 sylancr φd0D0˙<DG+d
55 18 42 54 pm2.61ne φd0DF<DG+d
56 fveq2 f=FDf=DF
57 56 breq1d f=FDf<DG+dDF<DG+d
58 fvoveq1 f=FDf-˙G˙q=DF-˙G˙q
59 58 breq1d f=FDf-˙G˙q<DGDF-˙G˙q<DG
60 59 rexbidv f=FqBDf-˙G˙q<DGqBDF-˙G˙q<DG
61 57 60 imbi12d f=FDf<DG+dqBDf-˙G˙q<DGDF<DG+dqBDF-˙G˙q<DG
62 oveq2 a=0DG+a=DG+0
63 62 breq2d a=0Df<DG+aDf<DG+0
64 63 imbi1d a=0Df<DG+aqBDf-˙G˙q<DGDf<DG+0qBDf-˙G˙q<DG
65 64 ralbidv a=0fBDf<DG+aqBDf-˙G˙q<DGfBDf<DG+0qBDf-˙G˙q<DG
66 65 imbi2d a=0φfBDf<DG+aqBDf-˙G˙q<DGφfBDf<DG+0qBDf-˙G˙q<DG
67 oveq2 a=dDG+a=DG+d
68 67 breq2d a=dDf<DG+aDf<DG+d
69 68 imbi1d a=dDf<DG+aqBDf-˙G˙q<DGDf<DG+dqBDf-˙G˙q<DG
70 69 ralbidv a=dfBDf<DG+aqBDf-˙G˙q<DGfBDf<DG+dqBDf-˙G˙q<DG
71 70 imbi2d a=dφfBDf<DG+aqBDf-˙G˙q<DGφfBDf<DG+dqBDf-˙G˙q<DG
72 oveq2 a=d+1DG+a=DG+d+1
73 72 breq2d a=d+1Df<DG+aDf<DG+d+1
74 73 imbi1d a=d+1Df<DG+aqBDf-˙G˙q<DGDf<DG+d+1qBDf-˙G˙q<DG
75 74 ralbidv a=d+1fBDf<DG+aqBDf-˙G˙q<DGfBDf<DG+d+1qBDf-˙G˙q<DG
76 75 imbi2d a=d+1φfBDf<DG+aqBDf-˙G˙q<DGφfBDf<DG+d+1qBDf-˙G˙q<DG
77 1 ply1ring RRingPRing
78 7 77 syl φPRing
79 3 5 ring0cl PRing0˙B
80 78 79 syl φ0˙B
81 80 ad2antrr φfBDf<DG+00˙B
82 3 6 5 ringrz PRingGBG˙0˙=0˙
83 78 9 82 syl2anc φG˙0˙=0˙
84 83 oveq2d φf-˙G˙0˙=f-˙0˙
85 84 adantr φfBf-˙G˙0˙=f-˙0˙
86 ringgrp PRingPGrp
87 78 86 syl φPGrp
88 3 5 4 grpsubid1 PGrpfBf-˙0˙=f
89 87 88 sylan φfBf-˙0˙=f
90 85 89 eqtr2d φfBf=f-˙G˙0˙
91 90 fveq2d φfBDf=Df-˙G˙0˙
92 27 nn0cnd φDG
93 92 addridd φDG+0=DG
94 93 adantr φfBDG+0=DG
95 91 94 breq12d φfBDf<DG+0Df-˙G˙0˙<DG
96 95 biimpa φfBDf<DG+0Df-˙G˙0˙<DG
97 oveq2 q=0˙G˙q=G˙0˙
98 97 oveq2d q=0˙f-˙G˙q=f-˙G˙0˙
99 98 fveq2d q=0˙Df-˙G˙q=Df-˙G˙0˙
100 99 breq1d q=0˙Df-˙G˙q<DGDf-˙G˙0˙<DG
101 100 rspcev 0˙BDf-˙G˙0˙<DGqBDf-˙G˙q<DG
102 81 96 101 syl2anc φfBDf<DG+0qBDf-˙G˙q<DG
103 102 ex φfBDf<DG+0qBDf-˙G˙q<DG
104 103 ralrimiva φfBDf<DG+0qBDf-˙G˙q<DG
105 nn0addcl DG0d0DG+d0
106 27 105 sylan φd0DG+d0
107 106 adantr φd0gBDg<DG+d+1DG+d0
108 7 ad2antrr φd0gBDg<DG+d+1RRing
109 simprl φd0gBDg<DG+d+1gB
110 2 1 3 deg1cl gBDg0−∞
111 27 ad2antrr φd0gBDG0
112 peano2nn0 d0d+10
113 112 ad2antlr φd0gBd+10
114 111 113 nn0addcld φd0gBDG+d+10
115 114 nn0zd φd0gBDG+d+1
116 degltlem1 Dg0−∞DG+d+1Dg<DG+d+1DgDG+d+1-1
117 110 115 116 syl2an2 φd0gBDg<DG+d+1DgDG+d+1-1
118 117 biimpd φd0gBDg<DG+d+1DgDG+d+1-1
119 118 impr φd0gBDg<DG+d+1DgDG+d+1-1
120 27 adantr φd0DG0
121 120 nn0cnd φd0DG
122 nn0cn d0d
123 122 adantl φd0d
124 peano2cn dd+1
125 123 124 syl φd0d+1
126 1cnd φd01
127 121 125 126 addsubassd φd0DG+d+1-1=DG+d+1-1
128 ax-1cn 1
129 pncan d1d+1-1=d
130 123 128 129 sylancl φd0d+1-1=d
131 130 oveq2d φd0DG+d+1-1=DG+d
132 127 131 eqtrd φd0DG+d+1-1=DG+d
133 132 adantr φd0gBDg<DG+d+1DG+d+1-1=DG+d
134 119 133 breqtrd φd0gBDg<DG+d+1DgDG+d
135 78 ad2antrr φd0gBPRing
136 9 ad2antrr φd0gBGB
137 7 ad2antrr φd0gBRRing
138 14 ad2antrr φd0gBIK
139 eqid coe1g=coe1g
140 139 3 1 12 coe1f gBcoe1g:0K
141 140 adantl φd0gBcoe1g:0K
142 simplr φd0gBd0
143 111 142 nn0addcld φd0gBDG+d0
144 141 143 ffvelcdmd φd0gBcoe1gDG+dK
145 12 13 ringcl RRingIKcoe1gDG+dKI·˙coe1gDG+dK
146 137 138 144 145 syl3anc φd0gBI·˙coe1gDG+dK
147 eqid var1R=var1R
148 eqid P=P
149 eqid mulGrpP=mulGrpP
150 eqid mulGrpP=mulGrpP
151 12 1 147 148 149 150 3 ply1tmcl RRingI·˙coe1gDG+dKd0I·˙coe1gDG+dPdmulGrpPvar1RB
152 137 146 142 151 syl3anc φd0gBI·˙coe1gDG+dPdmulGrpPvar1RB
153 3 6 ringcl PRingGBI·˙coe1gDG+dPdmulGrpPvar1RBG˙I·˙coe1gDG+dPdmulGrpPvar1RB
154 135 136 152 153 syl3anc φd0gBG˙I·˙coe1gDG+dPdmulGrpPvar1RB
155 154 adantrr φd0gBDg<DG+d+1G˙I·˙coe1gDG+dPdmulGrpPvar1RB
156 111 nn0red φd0gBDG
157 156 leidd φd0gBDGDG
158 2 12 1 147 148 149 150 deg1tmle RRingI·˙coe1gDG+dKd0DI·˙coe1gDG+dPdmulGrpPvar1Rd
159 137 146 142 158 syl3anc φd0gBDI·˙coe1gDG+dPdmulGrpPvar1Rd
160 1 2 137 3 6 136 152 111 142 157 159 deg1mulle2 φd0gBDG˙I·˙coe1gDG+dPdmulGrpPvar1RDG+d
161 160 adantrr φd0gBDg<DG+d+1DG˙I·˙coe1gDG+dPdmulGrpPvar1RDG+d
162 eqid coe1G˙I·˙coe1gDG+dPdmulGrpPvar1R=coe1G˙I·˙coe1gDG+dPdmulGrpPvar1R
163 eqid 0R=0R
164 163 12 1 147 148 149 150 3 6 13 136 137 146 142 111 coe1tmmul2fv φd0gBcoe1G˙I·˙coe1gDG+dPdmulGrpPvar1Rd+DG=coe1GDG·˙I·˙coe1gDG+d
165 111 nn0cnd φd0gBDG
166 122 ad2antlr φd0gBd
167 165 166 addcomd φd0gBDG+d=d+DG
168 167 fveq2d φd0gBcoe1G˙I·˙coe1gDG+dPdmulGrpPvar1RDG+d=coe1G˙I·˙coe1gDG+dPdmulGrpPvar1Rd+DG
169 15 oveq1d φcoe1GDG·˙I·˙coe1gDG+d=1˙·˙coe1gDG+d
170 169 ad2antrr φd0gBcoe1GDG·˙I·˙coe1gDG+d=1˙·˙coe1gDG+d
171 eqid coe1G=coe1G
172 171 3 1 12 coe1f GBcoe1G:0K
173 9 172 syl φcoe1G:0K
174 173 ad2antrr φd0gBcoe1G:0K
175 174 111 ffvelcdmd φd0gBcoe1GDGK
176 12 13 ringass RRingcoe1GDGKIKcoe1gDG+dKcoe1GDG·˙I·˙coe1gDG+d=coe1GDG·˙I·˙coe1gDG+d
177 137 175 138 144 176 syl13anc φd0gBcoe1GDG·˙I·˙coe1gDG+d=coe1GDG·˙I·˙coe1gDG+d
178 12 13 11 ringlidm RRingcoe1gDG+dK1˙·˙coe1gDG+d=coe1gDG+d
179 137 144 178 syl2anc φd0gB1˙·˙coe1gDG+d=coe1gDG+d
180 170 177 179 3eqtr3rd φd0gBcoe1gDG+d=coe1GDG·˙I·˙coe1gDG+d
181 164 168 180 3eqtr4rd φd0gBcoe1gDG+d=coe1G˙I·˙coe1gDG+dPdmulGrpPvar1RDG+d
182 181 adantrr φd0gBDg<DG+d+1coe1gDG+d=coe1G˙I·˙coe1gDG+dPdmulGrpPvar1RDG+d
183 2 1 3 4 107 108 109 134 155 161 139 162 182 deg1sublt φd0gBDg<DG+d+1Dg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R<DG+d
184 183 adantlrr φd0fBDf<DG+dqBDf-˙G˙q<DGgBDg<DG+d+1Dg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R<DG+d
185 fveq2 f=g-˙G˙I·˙coe1gDG+dPdmulGrpPvar1RDf=Dg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R
186 185 breq1d f=g-˙G˙I·˙coe1gDG+dPdmulGrpPvar1RDf<DG+dDg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R<DG+d
187 fvoveq1 f=g-˙G˙I·˙coe1gDG+dPdmulGrpPvar1RDf-˙G˙q=Dg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R-˙G˙q
188 187 breq1d f=g-˙G˙I·˙coe1gDG+dPdmulGrpPvar1RDf-˙G˙q<DGDg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R-˙G˙q<DG
189 188 rexbidv f=g-˙G˙I·˙coe1gDG+dPdmulGrpPvar1RqBDf-˙G˙q<DGqBDg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R-˙G˙q<DG
190 186 189 imbi12d f=g-˙G˙I·˙coe1gDG+dPdmulGrpPvar1RDf<DG+dqBDf-˙G˙q<DGDg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R<DG+dqBDg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R-˙G˙q<DG
191 simplrr φd0fBDf<DG+dqBDf-˙G˙q<DGgBDg<DG+d+1fBDf<DG+dqBDf-˙G˙q<DG
192 87 ad2antrr φd0gBPGrp
193 simpr φd0gBgB
194 3 4 grpsubcl PGrpgBG˙I·˙coe1gDG+dPdmulGrpPvar1RBg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1RB
195 192 193 154 194 syl3anc φd0gBg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1RB
196 195 adantrr φd0gBDg<DG+d+1g-˙G˙I·˙coe1gDG+dPdmulGrpPvar1RB
197 196 adantlrr φd0fBDf<DG+dqBDf-˙G˙q<DGgBDg<DG+d+1g-˙G˙I·˙coe1gDG+dPdmulGrpPvar1RB
198 190 191 197 rspcdva φd0fBDf<DG+dqBDf-˙G˙q<DGgBDg<DG+d+1Dg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R<DG+dqBDg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R-˙G˙q<DG
199 184 198 mpd φd0fBDf<DG+dqBDf-˙G˙q<DGgBDg<DG+d+1qBDg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R-˙G˙q<DG
200 78 ad3antrrr φd0gBqBPRing
201 simpr φd0gBqBqB
202 152 adantr φd0gBqBI·˙coe1gDG+dPdmulGrpPvar1RB
203 eqid +P=+P
204 3 203 ringacl PRingqBI·˙coe1gDG+dPdmulGrpPvar1RBq+PI·˙coe1gDG+dPdmulGrpPvar1RB
205 200 201 202 204 syl3anc φd0gBqBq+PI·˙coe1gDG+dPdmulGrpPvar1RB
206 87 ad3antrrr φd0gBqBPGrp
207 simplr φd0gBqBgB
208 154 adantr φd0gBqBG˙I·˙coe1gDG+dPdmulGrpPvar1RB
209 9 ad3antrrr φd0gBqBGB
210 3 6 ringcl PRingGBqBG˙qB
211 200 209 201 210 syl3anc φd0gBqBG˙qB
212 3 203 4 grpsubsub4 PGrpgBG˙I·˙coe1gDG+dPdmulGrpPvar1RBG˙qBg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R-˙G˙q=g-˙G˙q+PG˙I·˙coe1gDG+dPdmulGrpPvar1R
213 206 207 208 211 212 syl13anc φd0gBqBg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R-˙G˙q=g-˙G˙q+PG˙I·˙coe1gDG+dPdmulGrpPvar1R
214 3 203 6 ringdi PRingGBqBI·˙coe1gDG+dPdmulGrpPvar1RBG˙q+PI·˙coe1gDG+dPdmulGrpPvar1R=G˙q+PG˙I·˙coe1gDG+dPdmulGrpPvar1R
215 200 209 201 202 214 syl13anc φd0gBqBG˙q+PI·˙coe1gDG+dPdmulGrpPvar1R=G˙q+PG˙I·˙coe1gDG+dPdmulGrpPvar1R
216 215 oveq2d φd0gBqBg-˙G˙q+PI·˙coe1gDG+dPdmulGrpPvar1R=g-˙G˙q+PG˙I·˙coe1gDG+dPdmulGrpPvar1R
217 213 216 eqtr4d φd0gBqBg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R-˙G˙q=g-˙G˙q+PI·˙coe1gDG+dPdmulGrpPvar1R
218 217 fveq2d φd0gBqBDg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R-˙G˙q=Dg-˙G˙q+PI·˙coe1gDG+dPdmulGrpPvar1R
219 218 breq1d φd0gBqBDg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R-˙G˙q<DGDg-˙G˙q+PI·˙coe1gDG+dPdmulGrpPvar1R<DG
220 219 biimpd φd0gBqBDg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R-˙G˙q<DGDg-˙G˙q+PI·˙coe1gDG+dPdmulGrpPvar1R<DG
221 oveq2 r=q+PI·˙coe1gDG+dPdmulGrpPvar1RG˙r=G˙q+PI·˙coe1gDG+dPdmulGrpPvar1R
222 221 oveq2d r=q+PI·˙coe1gDG+dPdmulGrpPvar1Rg-˙G˙r=g-˙G˙q+PI·˙coe1gDG+dPdmulGrpPvar1R
223 222 fveq2d r=q+PI·˙coe1gDG+dPdmulGrpPvar1RDg-˙G˙r=Dg-˙G˙q+PI·˙coe1gDG+dPdmulGrpPvar1R
224 223 breq1d r=q+PI·˙coe1gDG+dPdmulGrpPvar1RDg-˙G˙r<DGDg-˙G˙q+PI·˙coe1gDG+dPdmulGrpPvar1R<DG
225 224 rspcev q+PI·˙coe1gDG+dPdmulGrpPvar1RBDg-˙G˙q+PI·˙coe1gDG+dPdmulGrpPvar1R<DGrBDg-˙G˙r<DG
226 205 220 225 syl6an φd0gBqBDg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R-˙G˙q<DGrBDg-˙G˙r<DG
227 226 rexlimdva φd0gBqBDg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R-˙G˙q<DGrBDg-˙G˙r<DG
228 227 adantrr φd0gBDg<DG+d+1qBDg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R-˙G˙q<DGrBDg-˙G˙r<DG
229 228 adantlrr φd0fBDf<DG+dqBDf-˙G˙q<DGgBDg<DG+d+1qBDg-˙G˙I·˙coe1gDG+dPdmulGrpPvar1R-˙G˙q<DGrBDg-˙G˙r<DG
230 199 229 mpd φd0fBDf<DG+dqBDf-˙G˙q<DGgBDg<DG+d+1rBDg-˙G˙r<DG
231 230 expr φd0fBDf<DG+dqBDf-˙G˙q<DGgBDg<DG+d+1rBDg-˙G˙r<DG
232 231 ralrimiva φd0fBDf<DG+dqBDf-˙G˙q<DGgBDg<DG+d+1rBDg-˙G˙r<DG
233 fveq2 g=fDg=Df
234 233 breq1d g=fDg<DG+d+1Df<DG+d+1
235 fvoveq1 g=fDg-˙G˙r=Df-˙G˙r
236 235 breq1d g=fDg-˙G˙r<DGDf-˙G˙r<DG
237 236 rexbidv g=frBDg-˙G˙r<DGrBDf-˙G˙r<DG
238 oveq2 r=qG˙r=G˙q
239 238 oveq2d r=qf-˙G˙r=f-˙G˙q
240 239 fveq2d r=qDf-˙G˙r=Df-˙G˙q
241 240 breq1d r=qDf-˙G˙r<DGDf-˙G˙q<DG
242 241 cbvrexvw rBDf-˙G˙r<DGqBDf-˙G˙q<DG
243 237 242 bitrdi g=frBDg-˙G˙r<DGqBDf-˙G˙q<DG
244 234 243 imbi12d g=fDg<DG+d+1rBDg-˙G˙r<DGDf<DG+d+1qBDf-˙G˙q<DG
245 244 cbvralvw gBDg<DG+d+1rBDg-˙G˙r<DGfBDf<DG+d+1qBDf-˙G˙q<DG
246 232 245 sylib φd0fBDf<DG+dqBDf-˙G˙q<DGfBDf<DG+d+1qBDf-˙G˙q<DG
247 246 exp32 φd0fBDf<DG+dqBDf-˙G˙q<DGfBDf<DG+d+1qBDf-˙G˙q<DG
248 247 com12 d0φfBDf<DG+dqBDf-˙G˙q<DGfBDf<DG+d+1qBDf-˙G˙q<DG
249 248 a2d d0φfBDf<DG+dqBDf-˙G˙q<DGφfBDf<DG+d+1qBDf-˙G˙q<DG
250 66 71 76 71 104 249 nn0ind d0φfBDf<DG+dqBDf-˙G˙q<DG
251 250 impcom φd0fBDf<DG+dqBDf-˙G˙q<DG
252 8 adantr φd0FB
253 61 251 252 rspcdva φd0DF<DG+dqBDF-˙G˙q<DG
254 253 rexlimdva φd0DF<DG+dqBDF-˙G˙q<DG
255 55 254 mpd φqBDF-˙G˙q<DG