Step |
Hyp |
Ref |
Expression |
1 |
|
coe1tm.z |
|
2 |
|
coe1tm.k |
|
3 |
|
coe1tm.p |
|
4 |
|
coe1tm.x |
|
5 |
|
coe1tm.m |
|
6 |
|
coe1tm.n |
|
7 |
|
coe1tm.e |
|
8 |
|
coe1tmmul.b |
|
9 |
|
coe1tmmul.t |
|
10 |
|
coe1tmmul.u |
|
11 |
|
coe1tmmul.a |
|
12 |
|
coe1tmmul.r |
|
13 |
|
coe1tmmul.c |
|
14 |
|
coe1tmmul.d |
|
15 |
|
coe1tmmul2fv.y |
|
16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
coe1tmmul2 |
|
17 |
16
|
fveq1d |
|
18 |
14 15
|
nn0addcld |
|
19 |
|
breq2 |
|
20 |
|
fvoveq1 |
|
21 |
20
|
oveq1d |
|
22 |
19 21
|
ifbieq1d |
|
23 |
|
eqid |
|
24 |
|
ovex |
|
25 |
1
|
fvexi |
|
26 |
24 25
|
ifex |
|
27 |
22 23 26
|
fvmpt |
|
28 |
18 27
|
syl |
|
29 |
14
|
nn0red |
|
30 |
|
nn0addge1 |
|
31 |
29 15 30
|
syl2anc |
|
32 |
31
|
iftrued |
|
33 |
14
|
nn0cnd |
|
34 |
15
|
nn0cnd |
|
35 |
33 34
|
pncan2d |
|
36 |
35
|
fveq2d |
|
37 |
36
|
oveq1d |
|
38 |
28 32 37
|
3eqtrd |
|
39 |
17 38
|
eqtrd |
|