| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coe1tm.z |
|
| 2 |
|
coe1tm.k |
|
| 3 |
|
coe1tm.p |
|
| 4 |
|
coe1tm.x |
|
| 5 |
|
coe1tm.m |
|
| 6 |
|
coe1tm.n |
|
| 7 |
|
coe1tm.e |
|
| 8 |
|
coe1tmmul.b |
|
| 9 |
|
coe1tmmul.t |
|
| 10 |
|
coe1tmmul.u |
|
| 11 |
|
coe1tmmul.a |
|
| 12 |
|
coe1tmmul.r |
|
| 13 |
|
coe1tmmul.c |
|
| 14 |
|
coe1tmmul.d |
|
| 15 |
|
coe1tmmul2fv.y |
|
| 16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
coe1tmmul2 |
|
| 17 |
16
|
fveq1d |
|
| 18 |
14 15
|
nn0addcld |
|
| 19 |
|
breq2 |
|
| 20 |
|
fvoveq1 |
|
| 21 |
20
|
oveq1d |
|
| 22 |
19 21
|
ifbieq1d |
|
| 23 |
|
eqid |
|
| 24 |
|
ovex |
|
| 25 |
1
|
fvexi |
|
| 26 |
24 25
|
ifex |
|
| 27 |
22 23 26
|
fvmpt |
|
| 28 |
18 27
|
syl |
|
| 29 |
14
|
nn0red |
|
| 30 |
|
nn0addge1 |
|
| 31 |
29 15 30
|
syl2anc |
|
| 32 |
31
|
iftrued |
|
| 33 |
14
|
nn0cnd |
|
| 34 |
15
|
nn0cnd |
|
| 35 |
33 34
|
pncan2d |
|
| 36 |
35
|
fveq2d |
|
| 37 |
36
|
oveq1d |
|
| 38 |
28 32 37
|
3eqtrd |
|
| 39 |
17 38
|
eqtrd |
|