| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coe1pwmul.z |
|
| 2 |
|
coe1pwmul.p |
|
| 3 |
|
coe1pwmul.x |
|
| 4 |
|
coe1pwmul.n |
|
| 5 |
|
coe1pwmul.e |
|
| 6 |
|
coe1pwmul.b |
|
| 7 |
|
coe1pwmul.t |
|
| 8 |
|
coe1pwmul.r |
|
| 9 |
|
coe1pwmul.a |
|
| 10 |
|
coe1pwmul.d |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
11 14
|
ringidcl |
|
| 16 |
8 15
|
syl |
|
| 17 |
1 11 2 3 12 4 5 6 7 13 9 8 16 10
|
coe1tmmul |
|
| 18 |
2
|
ply1sca |
|
| 19 |
8 18
|
syl |
|
| 20 |
19
|
fveq2d |
|
| 21 |
20
|
oveq1d |
|
| 22 |
2
|
ply1lmod |
|
| 23 |
8 22
|
syl |
|
| 24 |
4 6
|
mgpbas |
|
| 25 |
2
|
ply1ring |
|
| 26 |
4
|
ringmgp |
|
| 27 |
8 25 26
|
3syl |
|
| 28 |
3 2 6
|
vr1cl |
|
| 29 |
8 28
|
syl |
|
| 30 |
24 5 27 10 29
|
mulgnn0cld |
|
| 31 |
|
eqid |
|
| 32 |
|
eqid |
|
| 33 |
6 31 12 32
|
lmodvs1 |
|
| 34 |
23 30 33
|
syl2anc |
|
| 35 |
21 34
|
eqtrd |
|
| 36 |
35
|
fvoveq1d |
|
| 37 |
8
|
ad2antrr |
|
| 38 |
|
eqid |
|
| 39 |
38 6 2 11
|
coe1f |
|
| 40 |
9 39
|
syl |
|
| 41 |
40
|
ad2antrr |
|
| 42 |
10
|
ad2antrr |
|
| 43 |
|
simplr |
|
| 44 |
|
simpr |
|
| 45 |
|
nn0sub2 |
|
| 46 |
42 43 44 45
|
syl3anc |
|
| 47 |
41 46
|
ffvelcdmd |
|
| 48 |
11 13 14
|
ringlidm |
|
| 49 |
37 47 48
|
syl2anc |
|
| 50 |
49
|
ifeq1da |
|
| 51 |
50
|
mpteq2dva |
|
| 52 |
17 36 51
|
3eqtr3d |
|