Metamath Proof Explorer


Theorem coe1pwmul

Description: Coefficient vector of a polynomial multiplied on the left by a variable power. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses coe1pwmul.z 0 ˙ = 0 R
coe1pwmul.p P = Poly 1 R
coe1pwmul.x X = var 1 R
coe1pwmul.n N = mulGrp P
coe1pwmul.e × ˙ = N
coe1pwmul.b B = Base P
coe1pwmul.t · ˙ = P
coe1pwmul.r φ R Ring
coe1pwmul.a φ A B
coe1pwmul.d φ D 0
Assertion coe1pwmul φ coe 1 D × ˙ X · ˙ A = x 0 if D x coe 1 A x D 0 ˙

Proof

Step Hyp Ref Expression
1 coe1pwmul.z 0 ˙ = 0 R
2 coe1pwmul.p P = Poly 1 R
3 coe1pwmul.x X = var 1 R
4 coe1pwmul.n N = mulGrp P
5 coe1pwmul.e × ˙ = N
6 coe1pwmul.b B = Base P
7 coe1pwmul.t · ˙ = P
8 coe1pwmul.r φ R Ring
9 coe1pwmul.a φ A B
10 coe1pwmul.d φ D 0
11 eqid Base R = Base R
12 eqid P = P
13 eqid R = R
14 eqid 1 R = 1 R
15 11 14 ringidcl R Ring 1 R Base R
16 8 15 syl φ 1 R Base R
17 1 11 2 3 12 4 5 6 7 13 9 8 16 10 coe1tmmul φ coe 1 1 R P D × ˙ X · ˙ A = x 0 if D x 1 R R coe 1 A x D 0 ˙
18 2 ply1sca R Ring R = Scalar P
19 8 18 syl φ R = Scalar P
20 19 fveq2d φ 1 R = 1 Scalar P
21 20 oveq1d φ 1 R P D × ˙ X = 1 Scalar P P D × ˙ X
22 2 ply1lmod R Ring P LMod
23 8 22 syl φ P LMod
24 2 ply1ring R Ring P Ring
25 4 ringmgp P Ring N Mnd
26 8 24 25 3syl φ N Mnd
27 3 2 6 vr1cl R Ring X B
28 8 27 syl φ X B
29 4 6 mgpbas B = Base N
30 29 5 mulgnn0cl N Mnd D 0 X B D × ˙ X B
31 26 10 28 30 syl3anc φ D × ˙ X B
32 eqid Scalar P = Scalar P
33 eqid 1 Scalar P = 1 Scalar P
34 6 32 12 33 lmodvs1 P LMod D × ˙ X B 1 Scalar P P D × ˙ X = D × ˙ X
35 23 31 34 syl2anc φ 1 Scalar P P D × ˙ X = D × ˙ X
36 21 35 eqtrd φ 1 R P D × ˙ X = D × ˙ X
37 36 fvoveq1d φ coe 1 1 R P D × ˙ X · ˙ A = coe 1 D × ˙ X · ˙ A
38 8 ad2antrr φ x 0 D x R Ring
39 eqid coe 1 A = coe 1 A
40 39 6 2 11 coe1f A B coe 1 A : 0 Base R
41 9 40 syl φ coe 1 A : 0 Base R
42 41 ad2antrr φ x 0 D x coe 1 A : 0 Base R
43 10 ad2antrr φ x 0 D x D 0
44 simplr φ x 0 D x x 0
45 simpr φ x 0 D x D x
46 nn0sub2 D 0 x 0 D x x D 0
47 43 44 45 46 syl3anc φ x 0 D x x D 0
48 42 47 ffvelrnd φ x 0 D x coe 1 A x D Base R
49 11 13 14 ringlidm R Ring coe 1 A x D Base R 1 R R coe 1 A x D = coe 1 A x D
50 38 48 49 syl2anc φ x 0 D x 1 R R coe 1 A x D = coe 1 A x D
51 50 ifeq1da φ x 0 if D x 1 R R coe 1 A x D 0 ˙ = if D x coe 1 A x D 0 ˙
52 51 mpteq2dva φ x 0 if D x 1 R R coe 1 A x D 0 ˙ = x 0 if D x coe 1 A x D 0 ˙
53 17 37 52 3eqtr3d φ coe 1 D × ˙ X · ˙ A = x 0 if D x coe 1 A x D 0 ˙