| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coe1pwmul.z |
|- .0. = ( 0g ` R ) |
| 2 |
|
coe1pwmul.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
coe1pwmul.x |
|- X = ( var1 ` R ) |
| 4 |
|
coe1pwmul.n |
|- N = ( mulGrp ` P ) |
| 5 |
|
coe1pwmul.e |
|- .^ = ( .g ` N ) |
| 6 |
|
coe1pwmul.b |
|- B = ( Base ` P ) |
| 7 |
|
coe1pwmul.t |
|- .x. = ( .r ` P ) |
| 8 |
|
coe1pwmul.r |
|- ( ph -> R e. Ring ) |
| 9 |
|
coe1pwmul.a |
|- ( ph -> A e. B ) |
| 10 |
|
coe1pwmul.d |
|- ( ph -> D e. NN0 ) |
| 11 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 12 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
| 13 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 14 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 15 |
11 14
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 16 |
8 15
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
| 17 |
1 11 2 3 12 4 5 6 7 13 9 8 16 10
|
coe1tmmul |
|- ( ph -> ( coe1 ` ( ( ( 1r ` R ) ( .s ` P ) ( D .^ X ) ) .x. A ) ) = ( x e. NN0 |-> if ( D <_ x , ( ( 1r ` R ) ( .r ` R ) ( ( coe1 ` A ) ` ( x - D ) ) ) , .0. ) ) ) |
| 18 |
2
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 19 |
8 18
|
syl |
|- ( ph -> R = ( Scalar ` P ) ) |
| 20 |
19
|
fveq2d |
|- ( ph -> ( 1r ` R ) = ( 1r ` ( Scalar ` P ) ) ) |
| 21 |
20
|
oveq1d |
|- ( ph -> ( ( 1r ` R ) ( .s ` P ) ( D .^ X ) ) = ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( D .^ X ) ) ) |
| 22 |
2
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
| 23 |
8 22
|
syl |
|- ( ph -> P e. LMod ) |
| 24 |
4 6
|
mgpbas |
|- B = ( Base ` N ) |
| 25 |
2
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 26 |
4
|
ringmgp |
|- ( P e. Ring -> N e. Mnd ) |
| 27 |
8 25 26
|
3syl |
|- ( ph -> N e. Mnd ) |
| 28 |
3 2 6
|
vr1cl |
|- ( R e. Ring -> X e. B ) |
| 29 |
8 28
|
syl |
|- ( ph -> X e. B ) |
| 30 |
24 5 27 10 29
|
mulgnn0cld |
|- ( ph -> ( D .^ X ) e. B ) |
| 31 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 32 |
|
eqid |
|- ( 1r ` ( Scalar ` P ) ) = ( 1r ` ( Scalar ` P ) ) |
| 33 |
6 31 12 32
|
lmodvs1 |
|- ( ( P e. LMod /\ ( D .^ X ) e. B ) -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( D .^ X ) ) = ( D .^ X ) ) |
| 34 |
23 30 33
|
syl2anc |
|- ( ph -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( D .^ X ) ) = ( D .^ X ) ) |
| 35 |
21 34
|
eqtrd |
|- ( ph -> ( ( 1r ` R ) ( .s ` P ) ( D .^ X ) ) = ( D .^ X ) ) |
| 36 |
35
|
fvoveq1d |
|- ( ph -> ( coe1 ` ( ( ( 1r ` R ) ( .s ` P ) ( D .^ X ) ) .x. A ) ) = ( coe1 ` ( ( D .^ X ) .x. A ) ) ) |
| 37 |
8
|
ad2antrr |
|- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> R e. Ring ) |
| 38 |
|
eqid |
|- ( coe1 ` A ) = ( coe1 ` A ) |
| 39 |
38 6 2 11
|
coe1f |
|- ( A e. B -> ( coe1 ` A ) : NN0 --> ( Base ` R ) ) |
| 40 |
9 39
|
syl |
|- ( ph -> ( coe1 ` A ) : NN0 --> ( Base ` R ) ) |
| 41 |
40
|
ad2antrr |
|- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> ( coe1 ` A ) : NN0 --> ( Base ` R ) ) |
| 42 |
10
|
ad2antrr |
|- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> D e. NN0 ) |
| 43 |
|
simplr |
|- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> x e. NN0 ) |
| 44 |
|
simpr |
|- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> D <_ x ) |
| 45 |
|
nn0sub2 |
|- ( ( D e. NN0 /\ x e. NN0 /\ D <_ x ) -> ( x - D ) e. NN0 ) |
| 46 |
42 43 44 45
|
syl3anc |
|- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> ( x - D ) e. NN0 ) |
| 47 |
41 46
|
ffvelcdmd |
|- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> ( ( coe1 ` A ) ` ( x - D ) ) e. ( Base ` R ) ) |
| 48 |
11 13 14
|
ringlidm |
|- ( ( R e. Ring /\ ( ( coe1 ` A ) ` ( x - D ) ) e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) ( ( coe1 ` A ) ` ( x - D ) ) ) = ( ( coe1 ` A ) ` ( x - D ) ) ) |
| 49 |
37 47 48
|
syl2anc |
|- ( ( ( ph /\ x e. NN0 ) /\ D <_ x ) -> ( ( 1r ` R ) ( .r ` R ) ( ( coe1 ` A ) ` ( x - D ) ) ) = ( ( coe1 ` A ) ` ( x - D ) ) ) |
| 50 |
49
|
ifeq1da |
|- ( ( ph /\ x e. NN0 ) -> if ( D <_ x , ( ( 1r ` R ) ( .r ` R ) ( ( coe1 ` A ) ` ( x - D ) ) ) , .0. ) = if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) ) |
| 51 |
50
|
mpteq2dva |
|- ( ph -> ( x e. NN0 |-> if ( D <_ x , ( ( 1r ` R ) ( .r ` R ) ( ( coe1 ` A ) ` ( x - D ) ) ) , .0. ) ) = ( x e. NN0 |-> if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) ) ) |
| 52 |
17 36 51
|
3eqtr3d |
|- ( ph -> ( coe1 ` ( ( D .^ X ) .x. A ) ) = ( x e. NN0 |-> if ( D <_ x , ( ( coe1 ` A ) ` ( x - D ) ) , .0. ) ) ) |