| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coe1tm.z |
|
| 2 |
|
coe1tm.k |
|
| 3 |
|
coe1tm.p |
|
| 4 |
|
coe1tm.x |
|
| 5 |
|
coe1tm.m |
|
| 6 |
|
coe1tm.n |
|
| 7 |
|
coe1tm.e |
|
| 8 |
|
coe1tmmul.b |
|
| 9 |
|
coe1tmmul.t |
|
| 10 |
|
coe1tmmul.u |
|
| 11 |
|
coe1tmmul.a |
|
| 12 |
|
coe1tmmul.r |
|
| 13 |
|
coe1tmmul.c |
|
| 14 |
|
coe1tmmul.d |
|
| 15 |
2 3 4 5 6 7 8
|
ply1tmcl |
|
| 16 |
12 13 14 15
|
syl3anc |
|
| 17 |
3 9 10 8
|
coe1mul |
|
| 18 |
12 11 16 17
|
syl3anc |
|
| 19 |
|
eqeq2 |
|
| 20 |
|
eqeq2 |
|
| 21 |
12
|
adantr |
|
| 22 |
|
ringmnd |
|
| 23 |
21 22
|
syl |
|
| 24 |
|
ovex |
|
| 25 |
24
|
a1i |
|
| 26 |
|
simprr |
|
| 27 |
14
|
adantr |
|
| 28 |
|
simprl |
|
| 29 |
|
nn0sub |
|
| 30 |
27 28 29
|
syl2anc |
|
| 31 |
26 30
|
mpbid |
|
| 32 |
27
|
nn0ge0d |
|
| 33 |
|
nn0re |
|
| 34 |
33
|
ad2antrl |
|
| 35 |
14
|
nn0red |
|
| 36 |
35
|
adantr |
|
| 37 |
34 36
|
subge02d |
|
| 38 |
32 37
|
mpbid |
|
| 39 |
|
fznn0 |
|
| 40 |
39
|
ad2antrl |
|
| 41 |
31 38 40
|
mpbir2and |
|
| 42 |
12
|
ad2antrr |
|
| 43 |
|
eqid |
|
| 44 |
43 8 3 2
|
coe1f |
|
| 45 |
11 44
|
syl |
|
| 46 |
45
|
ad2antrr |
|
| 47 |
|
elfznn0 |
|
| 48 |
47
|
adantl |
|
| 49 |
46 48
|
ffvelcdmd |
|
| 50 |
|
eqid |
|
| 51 |
50 8 3 2
|
coe1f |
|
| 52 |
16 51
|
syl |
|
| 53 |
52
|
ad2antrr |
|
| 54 |
|
fznn0sub |
|
| 55 |
54
|
adantl |
|
| 56 |
53 55
|
ffvelcdmd |
|
| 57 |
2 10
|
ringcl |
|
| 58 |
42 49 56 57
|
syl3anc |
|
| 59 |
58
|
fmpttd |
|
| 60 |
12
|
ad2antrr |
|
| 61 |
13
|
ad2antrr |
|
| 62 |
14
|
ad2antrr |
|
| 63 |
|
eldifi |
|
| 64 |
63 54
|
syl |
|
| 65 |
64
|
adantl |
|
| 66 |
|
eldifsn |
|
| 67 |
|
simplrl |
|
| 68 |
67
|
nn0cnd |
|
| 69 |
47
|
nn0cnd |
|
| 70 |
69
|
adantl |
|
| 71 |
68 70
|
nncand |
|
| 72 |
71
|
eqcomd |
|
| 73 |
|
oveq2 |
|
| 74 |
73
|
eqeq2d |
|
| 75 |
72 74
|
syl5ibrcom |
|
| 76 |
75
|
necon3d |
|
| 77 |
76
|
impr |
|
| 78 |
66 77
|
sylan2b |
|
| 79 |
1 2 3 4 5 6 7 60 61 62 65 78
|
coe1tmfv2 |
|
| 80 |
79
|
oveq2d |
|
| 81 |
2 10 1
|
ringrz |
|
| 82 |
42 49 81
|
syl2anc |
|
| 83 |
63 82
|
sylan2 |
|
| 84 |
80 83
|
eqtrd |
|
| 85 |
84 25
|
suppss2 |
|
| 86 |
2 1 23 25 41 59 85
|
gsumpt |
|
| 87 |
|
fveq2 |
|
| 88 |
|
oveq2 |
|
| 89 |
88
|
fveq2d |
|
| 90 |
87 89
|
oveq12d |
|
| 91 |
|
eqid |
|
| 92 |
|
ovex |
|
| 93 |
90 91 92
|
fvmpt |
|
| 94 |
41 93
|
syl |
|
| 95 |
28
|
nn0cnd |
|
| 96 |
27
|
nn0cnd |
|
| 97 |
95 96
|
nncand |
|
| 98 |
97
|
fveq2d |
|
| 99 |
13
|
adantr |
|
| 100 |
1 2 3 4 5 6 7
|
coe1tmfv1 |
|
| 101 |
21 99 27 100
|
syl3anc |
|
| 102 |
98 101
|
eqtrd |
|
| 103 |
102
|
oveq2d |
|
| 104 |
86 94 103
|
3eqtrd |
|
| 105 |
104
|
anassrs |
|
| 106 |
12
|
ad2antrr |
|
| 107 |
13
|
ad2antrr |
|
| 108 |
14
|
ad2antrr |
|
| 109 |
54
|
ad2antll |
|
| 110 |
54
|
nn0red |
|
| 111 |
110
|
ad2antll |
|
| 112 |
33
|
ad2antlr |
|
| 113 |
35
|
ad2antrr |
|
| 114 |
47
|
ad2antll |
|
| 115 |
114
|
nn0ge0d |
|
| 116 |
47
|
nn0red |
|
| 117 |
116
|
ad2antll |
|
| 118 |
112 117
|
subge02d |
|
| 119 |
115 118
|
mpbid |
|
| 120 |
|
simprl |
|
| 121 |
112 113
|
ltnled |
|
| 122 |
120 121
|
mpbird |
|
| 123 |
111 112 113 119 122
|
lelttrd |
|
| 124 |
111 123
|
gtned |
|
| 125 |
1 2 3 4 5 6 7 106 107 108 109 124
|
coe1tmfv2 |
|
| 126 |
125
|
oveq2d |
|
| 127 |
45
|
ad2antrr |
|
| 128 |
127 114
|
ffvelcdmd |
|
| 129 |
106 128 81
|
syl2anc |
|
| 130 |
126 129
|
eqtrd |
|
| 131 |
130
|
anassrs |
|
| 132 |
131
|
mpteq2dva |
|
| 133 |
132
|
oveq2d |
|
| 134 |
12 22
|
syl |
|
| 135 |
1
|
gsumz |
|
| 136 |
134 24 135
|
sylancl |
|
| 137 |
136
|
ad2antrr |
|
| 138 |
133 137
|
eqtrd |
|
| 139 |
19 20 105 138
|
ifbothda |
|
| 140 |
139
|
mpteq2dva |
|
| 141 |
18 140
|
eqtrd |
|