Metamath Proof Explorer


Theorem ifbothda

Description: A wff th containing a conditional operator is true when both of its cases are true. (Contributed by NM, 15-Feb-2015)

Ref Expression
Hypotheses ifboth.1 A=ifφABψθ
ifboth.2 B=ifφABχθ
ifbothda.3 ηφψ
ifbothda.4 η¬φχ
Assertion ifbothda ηθ

Proof

Step Hyp Ref Expression
1 ifboth.1 A=ifφABψθ
2 ifboth.2 B=ifφABχθ
3 ifbothda.3 ηφψ
4 ifbothda.4 η¬φχ
5 iftrue φifφAB=A
6 5 eqcomd φA=ifφAB
7 6 1 syl φψθ
8 7 adantl ηφψθ
9 3 8 mpbid ηφθ
10 iffalse ¬φifφAB=B
11 10 eqcomd ¬φB=ifφAB
12 11 2 syl ¬φχθ
13 12 adantl η¬φχθ
14 4 13 mpbid η¬φθ
15 9 14 pm2.61dan ηθ