| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1divalg.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ply1divalg.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 3 |
|
ply1divalg.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 4 |
|
ply1divalg.m |
⊢ − = ( -g ‘ 𝑃 ) |
| 5 |
|
ply1divalg.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
| 6 |
|
ply1divalg.t |
⊢ ∙ = ( .r ‘ 𝑃 ) |
| 7 |
|
ply1divalg.r1 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 8 |
|
ply1divalg.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 9 |
|
ply1divalg.g1 |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
| 10 |
|
ply1divalg.g2 |
⊢ ( 𝜑 → 𝐺 ≠ 0 ) |
| 11 |
|
ply1divex.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 12 |
|
ply1divex.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 13 |
|
ply1divex.u |
⊢ · = ( .r ‘ 𝑅 ) |
| 14 |
|
ply1divex.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝐾 ) |
| 15 |
|
ply1divex.g3 |
⊢ ( 𝜑 → ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) · 𝐼 ) = 1 ) |
| 16 |
|
fveq2 |
⊢ ( 𝐹 = 0 → ( 𝐷 ‘ 𝐹 ) = ( 𝐷 ‘ 0 ) ) |
| 17 |
16
|
breq1d |
⊢ ( 𝐹 = 0 → ( ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ↔ ( 𝐷 ‘ 0 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
| 18 |
17
|
rexbidv |
⊢ ( 𝐹 = 0 → ( ∃ 𝑑 ∈ ℕ0 ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ↔ ∃ 𝑑 ∈ ℕ0 ( 𝐷 ‘ 0 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
| 19 |
|
nnssnn0 |
⊢ ℕ ⊆ ℕ0 |
| 20 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → 𝑅 ∈ Ring ) |
| 21 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → 𝐹 ∈ 𝐵 ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → 𝐹 ≠ 0 ) |
| 23 |
2 1 5 3
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
| 24 |
20 21 22 23
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
| 25 |
24
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℝ ) |
| 26 |
2 1 5 3
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝐺 ≠ 0 ) → ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) |
| 27 |
7 9 10 26
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) |
| 28 |
27
|
nn0red |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ∈ ℝ ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐺 ) ∈ ℝ ) |
| 30 |
25 29
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → ( ( 𝐷 ‘ 𝐹 ) − ( 𝐷 ‘ 𝐺 ) ) ∈ ℝ ) |
| 31 |
|
arch |
⊢ ( ( ( 𝐷 ‘ 𝐹 ) − ( 𝐷 ‘ 𝐺 ) ) ∈ ℝ → ∃ 𝑑 ∈ ℕ ( ( 𝐷 ‘ 𝐹 ) − ( 𝐷 ‘ 𝐺 ) ) < 𝑑 ) |
| 32 |
30 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → ∃ 𝑑 ∈ ℕ ( ( 𝐷 ‘ 𝐹 ) − ( 𝐷 ‘ 𝐺 ) ) < 𝑑 ) |
| 33 |
|
ssrexv |
⊢ ( ℕ ⊆ ℕ0 → ( ∃ 𝑑 ∈ ℕ ( ( 𝐷 ‘ 𝐹 ) − ( 𝐷 ‘ 𝐺 ) ) < 𝑑 → ∃ 𝑑 ∈ ℕ0 ( ( 𝐷 ‘ 𝐹 ) − ( 𝐷 ‘ 𝐺 ) ) < 𝑑 ) ) |
| 34 |
19 32 33
|
mpsyl |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → ∃ 𝑑 ∈ ℕ0 ( ( 𝐷 ‘ 𝐹 ) − ( 𝐷 ‘ 𝐺 ) ) < 𝑑 ) |
| 35 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ 0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℝ ) |
| 36 |
28
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ 0 ) ∧ 𝑑 ∈ ℕ0 ) → ( 𝐷 ‘ 𝐺 ) ∈ ℝ ) |
| 37 |
|
nn0re |
⊢ ( 𝑑 ∈ ℕ0 → 𝑑 ∈ ℝ ) |
| 38 |
37
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ 0 ) ∧ 𝑑 ∈ ℕ0 ) → 𝑑 ∈ ℝ ) |
| 39 |
35 36 38
|
ltsubadd2d |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ 0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝐷 ‘ 𝐹 ) − ( 𝐷 ‘ 𝐺 ) ) < 𝑑 ↔ ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
| 40 |
39
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝐹 ≠ 0 ) ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝐷 ‘ 𝐹 ) − ( 𝐷 ‘ 𝐺 ) ) < 𝑑 → ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
| 41 |
40
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → ( ∃ 𝑑 ∈ ℕ0 ( ( 𝐷 ‘ 𝐹 ) − ( 𝐷 ‘ 𝐺 ) ) < 𝑑 → ∃ 𝑑 ∈ ℕ0 ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
| 42 |
34 41
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐹 ≠ 0 ) → ∃ 𝑑 ∈ ℕ0 ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
| 43 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 44 |
2 1 5
|
deg1z |
⊢ ( 𝑅 ∈ Ring → ( 𝐷 ‘ 0 ) = -∞ ) |
| 45 |
7 44
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 0 ) = -∞ ) |
| 46 |
|
0re |
⊢ 0 ∈ ℝ |
| 47 |
|
readdcl |
⊢ ( ( ( 𝐷 ‘ 𝐺 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 𝐷 ‘ 𝐺 ) + 0 ) ∈ ℝ ) |
| 48 |
28 46 47
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐺 ) + 0 ) ∈ ℝ ) |
| 49 |
48
|
mnfltd |
⊢ ( 𝜑 → -∞ < ( ( 𝐷 ‘ 𝐺 ) + 0 ) ) |
| 50 |
45 49
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝐷 ‘ 0 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) ) |
| 51 |
|
oveq2 |
⊢ ( 𝑑 = 0 → ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) = ( ( 𝐷 ‘ 𝐺 ) + 0 ) ) |
| 52 |
51
|
breq2d |
⊢ ( 𝑑 = 0 → ( ( 𝐷 ‘ 0 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ↔ ( 𝐷 ‘ 0 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) ) ) |
| 53 |
52
|
rspcev |
⊢ ( ( 0 ∈ ℕ0 ∧ ( 𝐷 ‘ 0 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) ) → ∃ 𝑑 ∈ ℕ0 ( 𝐷 ‘ 0 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
| 54 |
43 50 53
|
sylancr |
⊢ ( 𝜑 → ∃ 𝑑 ∈ ℕ0 ( 𝐷 ‘ 0 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
| 55 |
18 42 54
|
pm2.61ne |
⊢ ( 𝜑 → ∃ 𝑑 ∈ ℕ0 ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
| 56 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( 𝐷 ‘ 𝑓 ) = ( 𝐷 ‘ 𝐹 ) ) |
| 57 |
56
|
breq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ↔ ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
| 58 |
|
fvoveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) = ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ∙ 𝑞 ) ) ) ) |
| 59 |
58
|
breq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 60 |
59
|
rexbidv |
⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 61 |
57 60
|
imbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ( ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
| 62 |
|
oveq2 |
⊢ ( 𝑎 = 0 → ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) = ( ( 𝐷 ‘ 𝐺 ) + 0 ) ) |
| 63 |
62
|
breq2d |
⊢ ( 𝑎 = 0 → ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) ↔ ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) ) ) |
| 64 |
63
|
imbi1d |
⊢ ( 𝑎 = 0 → ( ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
| 65 |
64
|
ralbidv |
⊢ ( 𝑎 = 0 → ( ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
| 66 |
65
|
imbi2d |
⊢ ( 𝑎 = 0 → ( ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ↔ ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ) |
| 67 |
|
oveq2 |
⊢ ( 𝑎 = 𝑑 → ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) = ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
| 68 |
67
|
breq2d |
⊢ ( 𝑎 = 𝑑 → ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) ↔ ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
| 69 |
68
|
imbi1d |
⊢ ( 𝑎 = 𝑑 → ( ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
| 70 |
69
|
ralbidv |
⊢ ( 𝑎 = 𝑑 → ( ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
| 71 |
70
|
imbi2d |
⊢ ( 𝑎 = 𝑑 → ( ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ↔ ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ) |
| 72 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑑 + 1 ) → ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) = ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) |
| 73 |
72
|
breq2d |
⊢ ( 𝑎 = ( 𝑑 + 1 ) → ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) ↔ ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) |
| 74 |
73
|
imbi1d |
⊢ ( 𝑎 = ( 𝑑 + 1 ) → ( ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
| 75 |
74
|
ralbidv |
⊢ ( 𝑎 = ( 𝑑 + 1 ) → ( ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
| 76 |
75
|
imbi2d |
⊢ ( 𝑎 = ( 𝑑 + 1 ) → ( ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑎 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ↔ ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ) |
| 77 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 78 |
7 77
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 79 |
3 5
|
ring0cl |
⊢ ( 𝑃 ∈ Ring → 0 ∈ 𝐵 ) |
| 80 |
78 79
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 81 |
80
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) ∧ ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) ) → 0 ∈ 𝐵 ) |
| 82 |
3 6 5
|
ringrz |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝐺 ∙ 0 ) = 0 ) |
| 83 |
78 9 82
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∙ 0 ) = 0 ) |
| 84 |
83
|
oveq2d |
⊢ ( 𝜑 → ( 𝑓 − ( 𝐺 ∙ 0 ) ) = ( 𝑓 − 0 ) ) |
| 85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) → ( 𝑓 − ( 𝐺 ∙ 0 ) ) = ( 𝑓 − 0 ) ) |
| 86 |
|
ringgrp |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Grp ) |
| 87 |
78 86
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 88 |
3 5 4
|
grpsubid1 |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝑓 ∈ 𝐵 ) → ( 𝑓 − 0 ) = 𝑓 ) |
| 89 |
87 88
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) → ( 𝑓 − 0 ) = 𝑓 ) |
| 90 |
85 89
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) → 𝑓 = ( 𝑓 − ( 𝐺 ∙ 0 ) ) ) |
| 91 |
90
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑓 ) = ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 0 ) ) ) ) |
| 92 |
27
|
nn0cnd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ∈ ℂ ) |
| 93 |
92
|
addridd |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐺 ) + 0 ) = ( 𝐷 ‘ 𝐺 ) ) |
| 94 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝐺 ) + 0 ) = ( 𝐷 ‘ 𝐺 ) ) |
| 95 |
91 94
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) ↔ ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 0 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 96 |
95
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) ∧ ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) ) → ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 0 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |
| 97 |
|
oveq2 |
⊢ ( 𝑞 = 0 → ( 𝐺 ∙ 𝑞 ) = ( 𝐺 ∙ 0 ) ) |
| 98 |
97
|
oveq2d |
⊢ ( 𝑞 = 0 → ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) = ( 𝑓 − ( 𝐺 ∙ 0 ) ) ) |
| 99 |
98
|
fveq2d |
⊢ ( 𝑞 = 0 → ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) = ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 0 ) ) ) ) |
| 100 |
99
|
breq1d |
⊢ ( 𝑞 = 0 → ( ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 0 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 101 |
100
|
rspcev |
⊢ ( ( 0 ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 0 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |
| 102 |
81 96 101
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) ∧ ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |
| 103 |
102
|
ex |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 104 |
103
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 0 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 105 |
|
nn0addcl |
⊢ ( ( ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ∈ ℕ0 ) |
| 106 |
27 105
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ∈ ℕ0 ) |
| 107 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ∈ ℕ0 ) |
| 108 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → 𝑅 ∈ Ring ) |
| 109 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → 𝑔 ∈ 𝐵 ) |
| 110 |
2 1 3
|
deg1cl |
⊢ ( 𝑔 ∈ 𝐵 → ( 𝐷 ‘ 𝑔 ) ∈ ( ℕ0 ∪ { -∞ } ) ) |
| 111 |
27
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) |
| 112 |
|
peano2nn0 |
⊢ ( 𝑑 ∈ ℕ0 → ( 𝑑 + 1 ) ∈ ℕ0 ) |
| 113 |
112
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝑑 + 1 ) ∈ ℕ0 ) |
| 114 |
111 113
|
nn0addcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ∈ ℕ0 ) |
| 115 |
114
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ∈ ℤ ) |
| 116 |
|
degltlem1 |
⊢ ( ( ( 𝐷 ‘ 𝑔 ) ∈ ( ℕ0 ∪ { -∞ } ) ∧ ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ∈ ℤ ) → ( ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ↔ ( 𝐷 ‘ 𝑔 ) ≤ ( ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) − 1 ) ) ) |
| 117 |
110 115 116
|
syl2an2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ↔ ( 𝐷 ‘ 𝑔 ) ≤ ( ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) − 1 ) ) ) |
| 118 |
117
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ( 𝐷 ‘ 𝑔 ) ≤ ( ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) − 1 ) ) ) |
| 119 |
118
|
impr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( 𝐷 ‘ 𝑔 ) ≤ ( ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) − 1 ) ) |
| 120 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) |
| 121 |
120
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( 𝐷 ‘ 𝐺 ) ∈ ℂ ) |
| 122 |
|
nn0cn |
⊢ ( 𝑑 ∈ ℕ0 → 𝑑 ∈ ℂ ) |
| 123 |
122
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → 𝑑 ∈ ℂ ) |
| 124 |
|
peano2cn |
⊢ ( 𝑑 ∈ ℂ → ( 𝑑 + 1 ) ∈ ℂ ) |
| 125 |
123 124
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( 𝑑 + 1 ) ∈ ℂ ) |
| 126 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → 1 ∈ ℂ ) |
| 127 |
121 125 126
|
addsubassd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) − 1 ) = ( ( 𝐷 ‘ 𝐺 ) + ( ( 𝑑 + 1 ) − 1 ) ) ) |
| 128 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 129 |
|
pncan |
⊢ ( ( 𝑑 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑑 + 1 ) − 1 ) = 𝑑 ) |
| 130 |
123 128 129
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝑑 + 1 ) − 1 ) = 𝑑 ) |
| 131 |
130
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝐷 ‘ 𝐺 ) + ( ( 𝑑 + 1 ) − 1 ) ) = ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
| 132 |
127 131
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) − 1 ) = ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
| 133 |
132
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) − 1 ) = ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
| 134 |
119 133
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( 𝐷 ‘ 𝑔 ) ≤ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
| 135 |
78
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → 𝑃 ∈ Ring ) |
| 136 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → 𝐺 ∈ 𝐵 ) |
| 137 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 138 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → 𝐼 ∈ 𝐾 ) |
| 139 |
|
eqid |
⊢ ( coe1 ‘ 𝑔 ) = ( coe1 ‘ 𝑔 ) |
| 140 |
139 3 1 12
|
coe1f |
⊢ ( 𝑔 ∈ 𝐵 → ( coe1 ‘ 𝑔 ) : ℕ0 ⟶ 𝐾 ) |
| 141 |
140
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( coe1 ‘ 𝑔 ) : ℕ0 ⟶ 𝐾 ) |
| 142 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → 𝑑 ∈ ℕ0 ) |
| 143 |
111 142
|
nn0addcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ∈ ℕ0 ) |
| 144 |
141 143
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ∈ 𝐾 ) |
| 145 |
12 13
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝐾 ∧ ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ∈ 𝐾 ) → ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ∈ 𝐾 ) |
| 146 |
137 138 144 145
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ∈ 𝐾 ) |
| 147 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
| 148 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 149 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 150 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 151 |
12 1 147 148 149 150 3
|
ply1tmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ∈ 𝐾 ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ 𝐵 ) |
| 152 |
137 146 142 151
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ 𝐵 ) |
| 153 |
3 6
|
ringcl |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ 𝐵 ) → ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ) |
| 154 |
135 136 152 153
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ) |
| 155 |
154
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ) |
| 156 |
111
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝐷 ‘ 𝐺 ) ∈ ℝ ) |
| 157 |
156
|
leidd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝐷 ‘ 𝐺 ) ≤ ( 𝐷 ‘ 𝐺 ) ) |
| 158 |
2 12 1 147 148 149 150
|
deg1tmle |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ∈ 𝐾 ∧ 𝑑 ∈ ℕ0 ) → ( 𝐷 ‘ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ≤ 𝑑 ) |
| 159 |
137 146 142 158
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝐷 ‘ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ≤ 𝑑 ) |
| 160 |
1 2 137 3 6 136 152 111 142 157 159
|
deg1mulle2 |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝐷 ‘ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ≤ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
| 161 |
160
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( 𝐷 ‘ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ≤ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
| 162 |
|
eqid |
⊢ ( coe1 ‘ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) = ( coe1 ‘ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) |
| 163 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 164 |
163 12 1 147 148 149 150 3 6 13 136 137 146 142 111
|
coe1tmmul2fv |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ‘ ( 𝑑 + ( 𝐷 ‘ 𝐺 ) ) ) = ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) · ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ) ) |
| 165 |
111
|
nn0cnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝐷 ‘ 𝐺 ) ∈ ℂ ) |
| 166 |
122
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → 𝑑 ∈ ℂ ) |
| 167 |
165 166
|
addcomd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) = ( 𝑑 + ( 𝐷 ‘ 𝐺 ) ) ) |
| 168 |
167
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) = ( ( coe1 ‘ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ‘ ( 𝑑 + ( 𝐷 ‘ 𝐺 ) ) ) ) |
| 169 |
15
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) · 𝐼 ) · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) = ( 1 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ) |
| 170 |
169
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) · 𝐼 ) · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) = ( 1 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ) |
| 171 |
|
eqid |
⊢ ( coe1 ‘ 𝐺 ) = ( coe1 ‘ 𝐺 ) |
| 172 |
171 3 1 12
|
coe1f |
⊢ ( 𝐺 ∈ 𝐵 → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ 𝐾 ) |
| 173 |
9 172
|
syl |
⊢ ( 𝜑 → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ 𝐾 ) |
| 174 |
173
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ 𝐾 ) |
| 175 |
174 111
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ 𝐾 ) |
| 176 |
12 13
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ 𝐾 ∧ 𝐼 ∈ 𝐾 ∧ ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ∈ 𝐾 ) ) → ( ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) · 𝐼 ) · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) = ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) · ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ) ) |
| 177 |
137 175 138 144 176
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) · 𝐼 ) · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) = ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) · ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ) ) |
| 178 |
12 13 11
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ∈ 𝐾 ) → ( 1 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) = ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
| 179 |
137 144 178
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 1 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) = ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
| 180 |
170 177 179
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) = ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) · ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ) ) |
| 181 |
164 168 180
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) = ( ( coe1 ‘ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
| 182 |
181
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) = ( ( coe1 ‘ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
| 183 |
2 1 3 4 107 108 109 134 155 161 139 162 182
|
deg1sublt |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
| 184 |
183
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) |
| 185 |
|
fveq2 |
⊢ ( 𝑓 = ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) → ( 𝐷 ‘ 𝑓 ) = ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) |
| 186 |
185
|
breq1d |
⊢ ( 𝑓 = ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) → ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ↔ ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) |
| 187 |
|
fvoveq1 |
⊢ ( 𝑓 = ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) → ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) = ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) ) |
| 188 |
187
|
breq1d |
⊢ ( 𝑓 = ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) → ( ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 189 |
188
|
rexbidv |
⊢ ( 𝑓 = ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) → ( ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 190 |
186 189
|
imbi12d |
⊢ ( 𝑓 = ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) → ( ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ( ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
| 191 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 192 |
87
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → 𝑃 ∈ Grp ) |
| 193 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → 𝑔 ∈ 𝐵 ) |
| 194 |
3 4
|
grpsubcl |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝑔 ∈ 𝐵 ∧ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ) → ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ∈ 𝐵 ) |
| 195 |
192 193 154 194
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ∈ 𝐵 ) |
| 196 |
195
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ∈ 𝐵 ) |
| 197 |
196
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ∈ 𝐵 ) |
| 198 |
190 191 197
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 199 |
184 198
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |
| 200 |
78
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → 𝑃 ∈ Ring ) |
| 201 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → 𝑞 ∈ 𝐵 ) |
| 202 |
152
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ 𝐵 ) |
| 203 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 204 |
3 203
|
ringacl |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝑞 ∈ 𝐵 ∧ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ 𝐵 ) → ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ) |
| 205 |
200 201 202 204
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ) |
| 206 |
87
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → 𝑃 ∈ Grp ) |
| 207 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → 𝑔 ∈ 𝐵 ) |
| 208 |
154
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ) |
| 209 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → 𝐺 ∈ 𝐵 ) |
| 210 |
3 6
|
ringcl |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) → ( 𝐺 ∙ 𝑞 ) ∈ 𝐵 ) |
| 211 |
200 209 201 210
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( 𝐺 ∙ 𝑞 ) ∈ 𝐵 ) |
| 212 |
3 203 4
|
grpsubsub4 |
⊢ ( ( 𝑃 ∈ Grp ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ∧ ( 𝐺 ∙ 𝑞 ) ∈ 𝐵 ) ) → ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) = ( 𝑔 − ( ( 𝐺 ∙ 𝑞 ) ( +g ‘ 𝑃 ) ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) |
| 213 |
206 207 208 211 212
|
syl13anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) = ( 𝑔 − ( ( 𝐺 ∙ 𝑞 ) ( +g ‘ 𝑃 ) ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) |
| 214 |
3 203 6
|
ringdi |
⊢ ( ( 𝑃 ∈ Ring ∧ ( 𝐺 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ∧ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ∈ 𝐵 ) ) → ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) = ( ( 𝐺 ∙ 𝑞 ) ( +g ‘ 𝑃 ) ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
| 215 |
200 209 201 202 214
|
syl13anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) = ( ( 𝐺 ∙ 𝑞 ) ( +g ‘ 𝑃 ) ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
| 216 |
215
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( 𝑔 − ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) = ( 𝑔 − ( ( 𝐺 ∙ 𝑞 ) ( +g ‘ 𝑃 ) ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) |
| 217 |
213 216
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) = ( 𝑔 − ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) |
| 218 |
217
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) = ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) ) |
| 219 |
218
|
breq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 220 |
219
|
biimpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) → ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 221 |
|
oveq2 |
⊢ ( 𝑟 = ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) → ( 𝐺 ∙ 𝑟 ) = ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
| 222 |
221
|
oveq2d |
⊢ ( 𝑟 = ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) → ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) = ( 𝑔 − ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) |
| 223 |
222
|
fveq2d |
⊢ ( 𝑟 = ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) → ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) = ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) ) |
| 224 |
223
|
breq1d |
⊢ ( 𝑟 = ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) → ( ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 225 |
224
|
rspcev |
⊢ ( ( ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ ( 𝑞 ( +g ‘ 𝑃 ) ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) < ( 𝐷 ‘ 𝐺 ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |
| 226 |
205 220 225
|
syl6an |
⊢ ( ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑞 ∈ 𝐵 ) → ( ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) → ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 227 |
226
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ 𝑔 ∈ 𝐵 ) → ( ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) → ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 228 |
227
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) → ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 229 |
228
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ( ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( ( 𝑔 − ( 𝐺 ∙ ( ( 𝐼 · ( ( coe1 ‘ 𝑔 ) ‘ ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝑑 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) → ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 230 |
199 229
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ∧ ( 𝑔 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |
| 231 |
230
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 232 |
231
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) → ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 233 |
|
fveq2 |
⊢ ( 𝑔 = 𝑓 → ( 𝐷 ‘ 𝑔 ) = ( 𝐷 ‘ 𝑓 ) ) |
| 234 |
233
|
breq1d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ↔ ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) ) ) |
| 235 |
|
fvoveq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) = ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑟 ) ) ) ) |
| 236 |
235
|
breq1d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 237 |
236
|
rexbidv |
⊢ ( 𝑔 = 𝑓 → ( ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 238 |
|
oveq2 |
⊢ ( 𝑟 = 𝑞 → ( 𝐺 ∙ 𝑟 ) = ( 𝐺 ∙ 𝑞 ) ) |
| 239 |
238
|
oveq2d |
⊢ ( 𝑟 = 𝑞 → ( 𝑓 − ( 𝐺 ∙ 𝑟 ) ) = ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) |
| 240 |
239
|
fveq2d |
⊢ ( 𝑟 = 𝑞 → ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑟 ) ) ) = ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) ) |
| 241 |
240
|
breq1d |
⊢ ( 𝑟 = 𝑞 → ( ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 242 |
241
|
cbvrexvw |
⊢ ( ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |
| 243 |
237 242
|
bitrdi |
⊢ ( 𝑔 = 𝑓 → ( ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 244 |
234 243
|
imbi12d |
⊢ ( 𝑔 = 𝑓 → ( ( ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
| 245 |
244
|
cbvralvw |
⊢ ( ∀ 𝑔 ∈ 𝐵 ( ( 𝐷 ‘ 𝑔 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑟 ∈ 𝐵 ( 𝐷 ‘ ( 𝑔 − ( 𝐺 ∙ 𝑟 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 246 |
232 245
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ℕ0 ∧ ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 247 |
246
|
exp32 |
⊢ ( 𝜑 → ( 𝑑 ∈ ℕ0 → ( ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ) |
| 248 |
247
|
com12 |
⊢ ( 𝑑 ∈ ℕ0 → ( 𝜑 → ( ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ) |
| 249 |
248
|
a2d |
⊢ ( 𝑑 ∈ ℕ0 → ( ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) → ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + ( 𝑑 + 1 ) ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) ) |
| 250 |
66 71 76 71 104 249
|
nn0ind |
⊢ ( 𝑑 ∈ ℕ0 → ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
| 251 |
250
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ∀ 𝑓 ∈ 𝐵 ( ( 𝐷 ‘ 𝑓 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 252 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → 𝐹 ∈ 𝐵 ) |
| 253 |
61 251 252
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ℕ0 ) → ( ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 254 |
253
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ℕ0 ( 𝐷 ‘ 𝐹 ) < ( ( 𝐷 ‘ 𝐺 ) + 𝑑 ) → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 255 |
55 254
|
mpd |
⊢ ( 𝜑 → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |