Step |
Hyp |
Ref |
Expression |
1 |
|
ply1divalg.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1divalg.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
3 |
|
ply1divalg.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
ply1divalg.m |
⊢ − = ( -g ‘ 𝑃 ) |
5 |
|
ply1divalg.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
6 |
|
ply1divalg.t |
⊢ ∙ = ( .r ‘ 𝑃 ) |
7 |
|
ply1divalg.r1 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
8 |
|
ply1divalg.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
9 |
|
ply1divalg.g1 |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
10 |
|
ply1divalg.g2 |
⊢ ( 𝜑 → 𝐺 ≠ 0 ) |
11 |
|
ply1divalg.g3 |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ 𝑈 ) |
12 |
|
ply1divalg.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
13 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
15 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
16 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
17 |
12 16 14
|
ringinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
18 |
7 11 17
|
syl2anc |
⊢ ( 𝜑 → ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
19 |
12 16 15 13
|
unitrinv |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ 𝑈 ) → ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ) ) = ( 1r ‘ 𝑅 ) ) |
20 |
7 11 19
|
syl2anc |
⊢ ( 𝜑 → ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ) ) = ( 1r ‘ 𝑅 ) ) |
21 |
1 2 3 4 5 6 7 8 9 10 13 14 15 18 20
|
ply1divex |
⊢ ( 𝜑 → ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |
22 |
|
eqid |
⊢ ( RLReg ‘ 𝑅 ) = ( RLReg ‘ 𝑅 ) |
23 |
22 12
|
unitrrg |
⊢ ( 𝑅 ∈ Ring → 𝑈 ⊆ ( RLReg ‘ 𝑅 ) ) |
24 |
7 23
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ ( RLReg ‘ 𝑅 ) ) |
25 |
24 11
|
sseldd |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ ( RLReg ‘ 𝑅 ) ) |
26 |
1 2 3 4 5 6 7 8 9 10 25 22
|
ply1divmo |
⊢ ( 𝜑 → ∃* 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |
27 |
|
reu5 |
⊢ ( ∃! 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ( ∃ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ∧ ∃* 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
28 |
21 26 27
|
sylanbrc |
⊢ ( 𝜑 → ∃! 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ∙ 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |