| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1divalg.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply1divalg.d |
|- D = ( deg1 ` R ) |
| 3 |
|
ply1divalg.b |
|- B = ( Base ` P ) |
| 4 |
|
ply1divalg.m |
|- .- = ( -g ` P ) |
| 5 |
|
ply1divalg.z |
|- .0. = ( 0g ` P ) |
| 6 |
|
ply1divalg.t |
|- .xb = ( .r ` P ) |
| 7 |
|
ply1divalg.r1 |
|- ( ph -> R e. Ring ) |
| 8 |
|
ply1divalg.f |
|- ( ph -> F e. B ) |
| 9 |
|
ply1divalg.g1 |
|- ( ph -> G e. B ) |
| 10 |
|
ply1divalg.g2 |
|- ( ph -> G =/= .0. ) |
| 11 |
|
ply1divalg.g3 |
|- ( ph -> ( ( coe1 ` G ) ` ( D ` G ) ) e. U ) |
| 12 |
|
ply1divalg.u |
|- U = ( Unit ` R ) |
| 13 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 14 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 15 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 16 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
| 17 |
12 16 14
|
ringinvcl |
|- ( ( R e. Ring /\ ( ( coe1 ` G ) ` ( D ` G ) ) e. U ) -> ( ( invr ` R ) ` ( ( coe1 ` G ) ` ( D ` G ) ) ) e. ( Base ` R ) ) |
| 18 |
7 11 17
|
syl2anc |
|- ( ph -> ( ( invr ` R ) ` ( ( coe1 ` G ) ` ( D ` G ) ) ) e. ( Base ` R ) ) |
| 19 |
12 16 15 13
|
unitrinv |
|- ( ( R e. Ring /\ ( ( coe1 ` G ) ` ( D ` G ) ) e. U ) -> ( ( ( coe1 ` G ) ` ( D ` G ) ) ( .r ` R ) ( ( invr ` R ) ` ( ( coe1 ` G ) ` ( D ` G ) ) ) ) = ( 1r ` R ) ) |
| 20 |
7 11 19
|
syl2anc |
|- ( ph -> ( ( ( coe1 ` G ) ` ( D ` G ) ) ( .r ` R ) ( ( invr ` R ) ` ( ( coe1 ` G ) ` ( D ` G ) ) ) ) = ( 1r ` R ) ) |
| 21 |
1 2 3 4 5 6 7 8 9 10 13 14 15 18 20
|
ply1divex |
|- ( ph -> E. q e. B ( D ` ( F .- ( G .xb q ) ) ) < ( D ` G ) ) |
| 22 |
|
eqid |
|- ( RLReg ` R ) = ( RLReg ` R ) |
| 23 |
22 12
|
unitrrg |
|- ( R e. Ring -> U C_ ( RLReg ` R ) ) |
| 24 |
7 23
|
syl |
|- ( ph -> U C_ ( RLReg ` R ) ) |
| 25 |
24 11
|
sseldd |
|- ( ph -> ( ( coe1 ` G ) ` ( D ` G ) ) e. ( RLReg ` R ) ) |
| 26 |
1 2 3 4 5 6 7 8 9 10 25 22
|
ply1divmo |
|- ( ph -> E* q e. B ( D ` ( F .- ( G .xb q ) ) ) < ( D ` G ) ) |
| 27 |
|
reu5 |
|- ( E! q e. B ( D ` ( F .- ( G .xb q ) ) ) < ( D ` G ) <-> ( E. q e. B ( D ` ( F .- ( G .xb q ) ) ) < ( D ` G ) /\ E* q e. B ( D ` ( F .- ( G .xb q ) ) ) < ( D ` G ) ) ) |
| 28 |
21 26 27
|
sylanbrc |
|- ( ph -> E! q e. B ( D ` ( F .- ( G .xb q ) ) ) < ( D ` G ) ) |