| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1divalg.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply1divalg.d |
|- D = ( deg1 ` R ) |
| 3 |
|
ply1divalg.b |
|- B = ( Base ` P ) |
| 4 |
|
ply1divalg.m |
|- .- = ( -g ` P ) |
| 5 |
|
ply1divalg.z |
|- .0. = ( 0g ` P ) |
| 6 |
|
ply1divalg.t |
|- .xb = ( .r ` P ) |
| 7 |
|
ply1divalg.r1 |
|- ( ph -> R e. Ring ) |
| 8 |
|
ply1divalg.f |
|- ( ph -> F e. B ) |
| 9 |
|
ply1divalg.g1 |
|- ( ph -> G e. B ) |
| 10 |
|
ply1divalg.g2 |
|- ( ph -> G =/= .0. ) |
| 11 |
|
ply1divalg.g3 |
|- ( ph -> ( ( coe1 ` G ) ` ( D ` G ) ) e. U ) |
| 12 |
|
ply1divalg.u |
|- U = ( Unit ` R ) |
| 13 |
|
eqid |
|- ( Poly1 ` ( oppR ` R ) ) = ( Poly1 ` ( oppR ` R ) ) |
| 14 |
|
eqidd |
|- ( T. -> ( Base ` R ) = ( Base ` R ) ) |
| 15 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
| 16 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 17 |
15 16
|
opprbas |
|- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
| 18 |
17
|
a1i |
|- ( T. -> ( Base ` R ) = ( Base ` ( oppR ` R ) ) ) |
| 19 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 20 |
15 19
|
oppradd |
|- ( +g ` R ) = ( +g ` ( oppR ` R ) ) |
| 21 |
20
|
oveqi |
|- ( q ( +g ` R ) r ) = ( q ( +g ` ( oppR ` R ) ) r ) |
| 22 |
21
|
a1i |
|- ( ( T. /\ ( q e. ( Base ` R ) /\ r e. ( Base ` R ) ) ) -> ( q ( +g ` R ) r ) = ( q ( +g ` ( oppR ` R ) ) r ) ) |
| 23 |
14 18 22
|
deg1propd |
|- ( T. -> ( deg1 ` R ) = ( deg1 ` ( oppR ` R ) ) ) |
| 24 |
23
|
mptru |
|- ( deg1 ` R ) = ( deg1 ` ( oppR ` R ) ) |
| 25 |
2 24
|
eqtri |
|- D = ( deg1 ` ( oppR ` R ) ) |
| 26 |
1
|
fveq2i |
|- ( Base ` P ) = ( Base ` ( Poly1 ` R ) ) |
| 27 |
14 18 22
|
ply1baspropd |
|- ( T. -> ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` ( oppR ` R ) ) ) ) |
| 28 |
27
|
mptru |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` ( oppR ` R ) ) ) |
| 29 |
26 28
|
eqtri |
|- ( Base ` P ) = ( Base ` ( Poly1 ` ( oppR ` R ) ) ) |
| 30 |
3 29
|
eqtri |
|- B = ( Base ` ( Poly1 ` ( oppR ` R ) ) ) |
| 31 |
29
|
a1i |
|- ( T. -> ( Base ` P ) = ( Base ` ( Poly1 ` ( oppR ` R ) ) ) ) |
| 32 |
1
|
fveq2i |
|- ( +g ` P ) = ( +g ` ( Poly1 ` R ) ) |
| 33 |
14 18 22
|
ply1plusgpropd |
|- ( T. -> ( +g ` ( Poly1 ` R ) ) = ( +g ` ( Poly1 ` ( oppR ` R ) ) ) ) |
| 34 |
33
|
mptru |
|- ( +g ` ( Poly1 ` R ) ) = ( +g ` ( Poly1 ` ( oppR ` R ) ) ) |
| 35 |
32 34
|
eqtri |
|- ( +g ` P ) = ( +g ` ( Poly1 ` ( oppR ` R ) ) ) |
| 36 |
35
|
a1i |
|- ( T. -> ( +g ` P ) = ( +g ` ( Poly1 ` ( oppR ` R ) ) ) ) |
| 37 |
31 36
|
grpsubpropd |
|- ( T. -> ( -g ` P ) = ( -g ` ( Poly1 ` ( oppR ` R ) ) ) ) |
| 38 |
37
|
mptru |
|- ( -g ` P ) = ( -g ` ( Poly1 ` ( oppR ` R ) ) ) |
| 39 |
4 38
|
eqtri |
|- .- = ( -g ` ( Poly1 ` ( oppR ` R ) ) ) |
| 40 |
3
|
a1i |
|- ( T. -> B = ( Base ` P ) ) |
| 41 |
30
|
a1i |
|- ( T. -> B = ( Base ` ( Poly1 ` ( oppR ` R ) ) ) ) |
| 42 |
35
|
oveqi |
|- ( q ( +g ` P ) r ) = ( q ( +g ` ( Poly1 ` ( oppR ` R ) ) ) r ) |
| 43 |
42
|
a1i |
|- ( ( T. /\ ( q e. B /\ r e. B ) ) -> ( q ( +g ` P ) r ) = ( q ( +g ` ( Poly1 ` ( oppR ` R ) ) ) r ) ) |
| 44 |
40 41 43
|
grpidpropd |
|- ( T. -> ( 0g ` P ) = ( 0g ` ( Poly1 ` ( oppR ` R ) ) ) ) |
| 45 |
44
|
mptru |
|- ( 0g ` P ) = ( 0g ` ( Poly1 ` ( oppR ` R ) ) ) |
| 46 |
5 45
|
eqtri |
|- .0. = ( 0g ` ( Poly1 ` ( oppR ` R ) ) ) |
| 47 |
|
eqid |
|- ( .r ` ( Poly1 ` ( oppR ` R ) ) ) = ( .r ` ( Poly1 ` ( oppR ` R ) ) ) |
| 48 |
15
|
opprring |
|- ( R e. Ring -> ( oppR ` R ) e. Ring ) |
| 49 |
7 48
|
syl |
|- ( ph -> ( oppR ` R ) e. Ring ) |
| 50 |
12 15
|
opprunit |
|- U = ( Unit ` ( oppR ` R ) ) |
| 51 |
13 25 30 39 46 47 49 8 9 10 11 50
|
ply1divalg |
|- ( ph -> E! q e. B ( D ` ( F .- ( G ( .r ` ( Poly1 ` ( oppR ` R ) ) ) q ) ) ) < ( D ` G ) ) |
| 52 |
7
|
adantr |
|- ( ( ph /\ q e. B ) -> R e. Ring ) |
| 53 |
9
|
adantr |
|- ( ( ph /\ q e. B ) -> G e. B ) |
| 54 |
|
simpr |
|- ( ( ph /\ q e. B ) -> q e. B ) |
| 55 |
1 15 13 6 47 3
|
ply1opprmul |
|- ( ( R e. Ring /\ G e. B /\ q e. B ) -> ( G ( .r ` ( Poly1 ` ( oppR ` R ) ) ) q ) = ( q .xb G ) ) |
| 56 |
52 53 54 55
|
syl3anc |
|- ( ( ph /\ q e. B ) -> ( G ( .r ` ( Poly1 ` ( oppR ` R ) ) ) q ) = ( q .xb G ) ) |
| 57 |
56
|
eqcomd |
|- ( ( ph /\ q e. B ) -> ( q .xb G ) = ( G ( .r ` ( Poly1 ` ( oppR ` R ) ) ) q ) ) |
| 58 |
57
|
oveq2d |
|- ( ( ph /\ q e. B ) -> ( F .- ( q .xb G ) ) = ( F .- ( G ( .r ` ( Poly1 ` ( oppR ` R ) ) ) q ) ) ) |
| 59 |
58
|
fveq2d |
|- ( ( ph /\ q e. B ) -> ( D ` ( F .- ( q .xb G ) ) ) = ( D ` ( F .- ( G ( .r ` ( Poly1 ` ( oppR ` R ) ) ) q ) ) ) ) |
| 60 |
59
|
breq1d |
|- ( ( ph /\ q e. B ) -> ( ( D ` ( F .- ( q .xb G ) ) ) < ( D ` G ) <-> ( D ` ( F .- ( G ( .r ` ( Poly1 ` ( oppR ` R ) ) ) q ) ) ) < ( D ` G ) ) ) |
| 61 |
60
|
reubidva |
|- ( ph -> ( E! q e. B ( D ` ( F .- ( q .xb G ) ) ) < ( D ` G ) <-> E! q e. B ( D ` ( F .- ( G ( .r ` ( Poly1 ` ( oppR ` R ) ) ) q ) ) ) < ( D ` G ) ) ) |
| 62 |
51 61
|
mpbird |
|- ( ph -> E! q e. B ( D ` ( F .- ( q .xb G ) ) ) < ( D ` G ) ) |