| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1divalg.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ply1divalg.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 3 |
|
ply1divalg.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 4 |
|
ply1divalg.m |
⊢ − = ( -g ‘ 𝑃 ) |
| 5 |
|
ply1divalg.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
| 6 |
|
ply1divalg.t |
⊢ ∙ = ( .r ‘ 𝑃 ) |
| 7 |
|
ply1divalg.r1 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 8 |
|
ply1divalg.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 9 |
|
ply1divalg.g1 |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
| 10 |
|
ply1divalg.g2 |
⊢ ( 𝜑 → 𝐺 ≠ 0 ) |
| 11 |
|
ply1divalg.g3 |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ 𝑈 ) |
| 12 |
|
ply1divalg.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 13 |
|
eqid |
⊢ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) = ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) |
| 14 |
|
eqidd |
⊢ ( ⊤ → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
| 15 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 17 |
15 16
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 18 |
17
|
a1i |
⊢ ( ⊤ → ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑅 ) ) ) |
| 19 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 20 |
15 19
|
oppradd |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( oppr ‘ 𝑅 ) ) |
| 21 |
20
|
oveqi |
⊢ ( 𝑞 ( +g ‘ 𝑅 ) 𝑟 ) = ( 𝑞 ( +g ‘ ( oppr ‘ 𝑅 ) ) 𝑟 ) |
| 22 |
21
|
a1i |
⊢ ( ( ⊤ ∧ ( 𝑞 ∈ ( Base ‘ 𝑅 ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑞 ( +g ‘ 𝑅 ) 𝑟 ) = ( 𝑞 ( +g ‘ ( oppr ‘ 𝑅 ) ) 𝑟 ) ) |
| 23 |
14 18 22
|
deg1propd |
⊢ ( ⊤ → ( deg1 ‘ 𝑅 ) = ( deg1 ‘ ( oppr ‘ 𝑅 ) ) ) |
| 24 |
23
|
mptru |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ ( oppr ‘ 𝑅 ) ) |
| 25 |
2 24
|
eqtri |
⊢ 𝐷 = ( deg1 ‘ ( oppr ‘ 𝑅 ) ) |
| 26 |
1
|
fveq2i |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
| 27 |
14 18 22
|
ply1baspropd |
⊢ ( ⊤ → ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| 28 |
27
|
mptru |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) |
| 29 |
26 28
|
eqtri |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) |
| 30 |
3 29
|
eqtri |
⊢ 𝐵 = ( Base ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) |
| 31 |
29
|
a1i |
⊢ ( ⊤ → ( Base ‘ 𝑃 ) = ( Base ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| 32 |
1
|
fveq2i |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ ( Poly1 ‘ 𝑅 ) ) |
| 33 |
14 18 22
|
ply1plusgpropd |
⊢ ( ⊤ → ( +g ‘ ( Poly1 ‘ 𝑅 ) ) = ( +g ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| 34 |
33
|
mptru |
⊢ ( +g ‘ ( Poly1 ‘ 𝑅 ) ) = ( +g ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) |
| 35 |
32 34
|
eqtri |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) |
| 36 |
35
|
a1i |
⊢ ( ⊤ → ( +g ‘ 𝑃 ) = ( +g ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| 37 |
31 36
|
grpsubpropd |
⊢ ( ⊤ → ( -g ‘ 𝑃 ) = ( -g ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| 38 |
37
|
mptru |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) |
| 39 |
4 38
|
eqtri |
⊢ − = ( -g ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) |
| 40 |
3
|
a1i |
⊢ ( ⊤ → 𝐵 = ( Base ‘ 𝑃 ) ) |
| 41 |
30
|
a1i |
⊢ ( ⊤ → 𝐵 = ( Base ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| 42 |
35
|
oveqi |
⊢ ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) = ( 𝑞 ( +g ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) 𝑟 ) |
| 43 |
42
|
a1i |
⊢ ( ( ⊤ ∧ ( 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) ) → ( 𝑞 ( +g ‘ 𝑃 ) 𝑟 ) = ( 𝑞 ( +g ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) 𝑟 ) ) |
| 44 |
40 41 43
|
grpidpropd |
⊢ ( ⊤ → ( 0g ‘ 𝑃 ) = ( 0g ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| 45 |
44
|
mptru |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) |
| 46 |
5 45
|
eqtri |
⊢ 0 = ( 0g ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) |
| 47 |
|
eqid |
⊢ ( .r ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) = ( .r ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) |
| 48 |
15
|
opprring |
⊢ ( 𝑅 ∈ Ring → ( oppr ‘ 𝑅 ) ∈ Ring ) |
| 49 |
7 48
|
syl |
⊢ ( 𝜑 → ( oppr ‘ 𝑅 ) ∈ Ring ) |
| 50 |
12 15
|
opprunit |
⊢ 𝑈 = ( Unit ‘ ( oppr ‘ 𝑅 ) ) |
| 51 |
13 25 30 39 46 47 49 8 9 10 11 50
|
ply1divalg |
⊢ ( 𝜑 → ∃! 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ( .r ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |
| 52 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 53 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → 𝐺 ∈ 𝐵 ) |
| 54 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → 𝑞 ∈ 𝐵 ) |
| 55 |
1 15 13 6 47 3
|
ply1opprmul |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) → ( 𝐺 ( .r ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) 𝑞 ) = ( 𝑞 ∙ 𝐺 ) ) |
| 56 |
52 53 54 55
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → ( 𝐺 ( .r ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) 𝑞 ) = ( 𝑞 ∙ 𝐺 ) ) |
| 57 |
56
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → ( 𝑞 ∙ 𝐺 ) = ( 𝐺 ( .r ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) 𝑞 ) ) |
| 58 |
57
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → ( 𝐹 − ( 𝑞 ∙ 𝐺 ) ) = ( 𝐹 − ( 𝐺 ( .r ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) 𝑞 ) ) ) |
| 59 |
58
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → ( 𝐷 ‘ ( 𝐹 − ( 𝑞 ∙ 𝐺 ) ) ) = ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ( .r ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) 𝑞 ) ) ) ) |
| 60 |
59
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → ( ( 𝐷 ‘ ( 𝐹 − ( 𝑞 ∙ 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ( .r ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 61 |
60
|
reubidva |
⊢ ( 𝜑 → ( ∃! 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝑞 ∙ 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ∃! 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝐺 ( .r ‘ ( Poly1 ‘ ( oppr ‘ 𝑅 ) ) ) 𝑞 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 62 |
51 61
|
mpbird |
⊢ ( 𝜑 → ∃! 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝑞 ∙ 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |