| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1opprmul.y |
|- Y = ( Poly1 ` R ) |
| 2 |
|
ply1opprmul.s |
|- S = ( oppR ` R ) |
| 3 |
|
ply1opprmul.z |
|- Z = ( Poly1 ` S ) |
| 4 |
|
ply1opprmul.t |
|- .x. = ( .r ` Y ) |
| 5 |
|
ply1opprmul.u |
|- .xb = ( .r ` Z ) |
| 6 |
|
ply1opprmul.b |
|- B = ( Base ` Y ) |
| 7 |
|
id |
|- ( R e. Ring -> R e. Ring ) |
| 8 |
1 6
|
ply1bascl |
|- ( F e. B -> F e. ( Base ` ( PwSer1 ` R ) ) ) |
| 9 |
|
eqid |
|- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
| 10 |
|
eqid |
|- ( Base ` ( PwSer1 ` R ) ) = ( Base ` ( PwSer1 ` R ) ) |
| 11 |
9 10
|
psr1bascl |
|- ( F e. ( Base ` ( PwSer1 ` R ) ) -> F e. ( Base ` ( 1o mPwSer R ) ) ) |
| 12 |
8 11
|
syl |
|- ( F e. B -> F e. ( Base ` ( 1o mPwSer R ) ) ) |
| 13 |
1 6
|
ply1bascl |
|- ( G e. B -> G e. ( Base ` ( PwSer1 ` R ) ) ) |
| 14 |
9 10
|
psr1bascl |
|- ( G e. ( Base ` ( PwSer1 ` R ) ) -> G e. ( Base ` ( 1o mPwSer R ) ) ) |
| 15 |
13 14
|
syl |
|- ( G e. B -> G e. ( Base ` ( 1o mPwSer R ) ) ) |
| 16 |
|
eqid |
|- ( 1o mPwSer R ) = ( 1o mPwSer R ) |
| 17 |
|
eqid |
|- ( 1o mPwSer S ) = ( 1o mPwSer S ) |
| 18 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
| 19 |
1 18 4
|
ply1mulr |
|- .x. = ( .r ` ( 1o mPoly R ) ) |
| 20 |
18 16 19
|
mplmulr |
|- .x. = ( .r ` ( 1o mPwSer R ) ) |
| 21 |
|
eqid |
|- ( 1o mPoly S ) = ( 1o mPoly S ) |
| 22 |
3 21 5
|
ply1mulr |
|- .xb = ( .r ` ( 1o mPoly S ) ) |
| 23 |
21 17 22
|
mplmulr |
|- .xb = ( .r ` ( 1o mPwSer S ) ) |
| 24 |
|
eqid |
|- ( Base ` ( 1o mPwSer R ) ) = ( Base ` ( 1o mPwSer R ) ) |
| 25 |
16 2 17 20 23 24
|
psropprmul |
|- ( ( R e. Ring /\ F e. ( Base ` ( 1o mPwSer R ) ) /\ G e. ( Base ` ( 1o mPwSer R ) ) ) -> ( F .xb G ) = ( G .x. F ) ) |
| 26 |
7 12 15 25
|
syl3an |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( F .xb G ) = ( G .x. F ) ) |