Metamath Proof Explorer


Theorem ply1opprmul

Description: Reversing multiplication in a ring reverses multiplication in the univariate polynomial ring. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses ply1opprmul.y Y = Poly 1 R
ply1opprmul.s S = opp r R
ply1opprmul.z Z = Poly 1 S
ply1opprmul.t · ˙ = Y
ply1opprmul.u ˙ = Z
ply1opprmul.b B = Base Y
Assertion ply1opprmul R Ring F B G B F ˙ G = G · ˙ F

Proof

Step Hyp Ref Expression
1 ply1opprmul.y Y = Poly 1 R
2 ply1opprmul.s S = opp r R
3 ply1opprmul.z Z = Poly 1 S
4 ply1opprmul.t · ˙ = Y
5 ply1opprmul.u ˙ = Z
6 ply1opprmul.b B = Base Y
7 id R Ring R Ring
8 1 6 ply1bascl F B F Base PwSer 1 R
9 eqid PwSer 1 R = PwSer 1 R
10 eqid Base PwSer 1 R = Base PwSer 1 R
11 9 10 psr1bascl F Base PwSer 1 R F Base 1 𝑜 mPwSer R
12 8 11 syl F B F Base 1 𝑜 mPwSer R
13 1 6 ply1bascl G B G Base PwSer 1 R
14 9 10 psr1bascl G Base PwSer 1 R G Base 1 𝑜 mPwSer R
15 13 14 syl G B G Base 1 𝑜 mPwSer R
16 eqid 1 𝑜 mPwSer R = 1 𝑜 mPwSer R
17 eqid 1 𝑜 mPwSer S = 1 𝑜 mPwSer S
18 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
19 1 18 4 ply1mulr · ˙ = 1 𝑜 mPoly R
20 18 16 19 mplmulr · ˙ = 1 𝑜 mPwSer R
21 eqid 1 𝑜 mPoly S = 1 𝑜 mPoly S
22 3 21 5 ply1mulr ˙ = 1 𝑜 mPoly S
23 21 17 22 mplmulr ˙ = 1 𝑜 mPwSer S
24 eqid Base 1 𝑜 mPwSer R = Base 1 𝑜 mPwSer R
25 16 2 17 20 23 24 psropprmul R Ring F Base 1 𝑜 mPwSer R G Base 1 𝑜 mPwSer R F ˙ G = G · ˙ F
26 7 12 15 25 syl3an R Ring F B G B F ˙ G = G · ˙ F