Metamath Proof Explorer


Theorem ig1pcl

Description: The monic generator of an ideal is always in the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015) (Proof shortened by AV, 25-Sep-2020)

Ref Expression
Hypotheses ig1pval.p P = Poly 1 R
ig1pval.g G = idlGen 1p R
ig1pcl.u U = LIdeal P
Assertion ig1pcl R DivRing I U G I I

Proof

Step Hyp Ref Expression
1 ig1pval.p P = Poly 1 R
2 ig1pval.g G = idlGen 1p R
3 ig1pcl.u U = LIdeal P
4 fveq2 I = 0 P G I = G 0 P
5 id I = 0 P I = 0 P
6 4 5 eleq12d I = 0 P G I I G 0 P 0 P
7 eqid 0 P = 0 P
8 eqid deg 1 R = deg 1 R
9 eqid Monic 1p R = Monic 1p R
10 1 2 7 3 8 9 ig1pval3 R DivRing I U I 0 P G I I G I Monic 1p R deg 1 R G I = sup deg 1 R I 0 P <
11 10 simp1d R DivRing I U I 0 P G I I
12 11 3expa R DivRing I U I 0 P G I I
13 drngring R DivRing R Ring
14 1 2 7 ig1pval2 R Ring G 0 P = 0 P
15 13 14 syl R DivRing G 0 P = 0 P
16 fvex G 0 P V
17 16 elsn G 0 P 0 P G 0 P = 0 P
18 15 17 sylibr R DivRing G 0 P 0 P
19 18 adantr R DivRing I U G 0 P 0 P
20 6 12 19 pm2.61ne R DivRing I U G I I