Metamath Proof Explorer


Theorem ig1pcl

Description: The monic generator of an ideal is always in the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015) (Proof shortened by AV, 25-Sep-2020)

Ref Expression
Hypotheses ig1pval.p P=Poly1R
ig1pval.g G=idlGen1pR
ig1pcl.u U=LIdealP
Assertion ig1pcl RDivRingIUGII

Proof

Step Hyp Ref Expression
1 ig1pval.p P=Poly1R
2 ig1pval.g G=idlGen1pR
3 ig1pcl.u U=LIdealP
4 fveq2 I=0PGI=G0P
5 id I=0PI=0P
6 4 5 eleq12d I=0PGIIG0P0P
7 eqid 0P=0P
8 eqid deg1R=deg1R
9 eqid Monic1pR=Monic1pR
10 1 2 7 3 8 9 ig1pval3 RDivRingIUI0PGIIGIMonic1pRdeg1RGI=supdeg1RI0P<
11 10 simp1d RDivRingIUI0PGII
12 11 3expa RDivRingIUI0PGII
13 drngring RDivRingRRing
14 1 2 7 ig1pval2 RRingG0P=0P
15 13 14 syl RDivRingG0P=0P
16 fvex G0PV
17 16 elsn G0P0PG0P=0P
18 15 17 sylibr RDivRingG0P0P
19 18 adantr RDivRingIUG0P0P
20 6 12 19 pm2.61ne RDivRingIUGII