| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ig1pval.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ig1pval.g |
|- G = ( idlGen1p ` R ) |
| 3 |
|
ig1pcl.u |
|- U = ( LIdeal ` P ) |
| 4 |
|
fveq2 |
|- ( I = { ( 0g ` P ) } -> ( G ` I ) = ( G ` { ( 0g ` P ) } ) ) |
| 5 |
|
id |
|- ( I = { ( 0g ` P ) } -> I = { ( 0g ` P ) } ) |
| 6 |
4 5
|
eleq12d |
|- ( I = { ( 0g ` P ) } -> ( ( G ` I ) e. I <-> ( G ` { ( 0g ` P ) } ) e. { ( 0g ` P ) } ) ) |
| 7 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 8 |
|
eqid |
|- ( deg1 ` R ) = ( deg1 ` R ) |
| 9 |
|
eqid |
|- ( Monic1p ` R ) = ( Monic1p ` R ) |
| 10 |
1 2 7 3 8 9
|
ig1pval3 |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { ( 0g ` P ) } ) -> ( ( G ` I ) e. I /\ ( G ` I ) e. ( Monic1p ` R ) /\ ( ( deg1 ` R ) ` ( G ` I ) ) = inf ( ( ( deg1 ` R ) " ( I \ { ( 0g ` P ) } ) ) , RR , < ) ) ) |
| 11 |
10
|
simp1d |
|- ( ( R e. DivRing /\ I e. U /\ I =/= { ( 0g ` P ) } ) -> ( G ` I ) e. I ) |
| 12 |
11
|
3expa |
|- ( ( ( R e. DivRing /\ I e. U ) /\ I =/= { ( 0g ` P ) } ) -> ( G ` I ) e. I ) |
| 13 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
| 14 |
1 2 7
|
ig1pval2 |
|- ( R e. Ring -> ( G ` { ( 0g ` P ) } ) = ( 0g ` P ) ) |
| 15 |
13 14
|
syl |
|- ( R e. DivRing -> ( G ` { ( 0g ` P ) } ) = ( 0g ` P ) ) |
| 16 |
|
fvex |
|- ( G ` { ( 0g ` P ) } ) e. _V |
| 17 |
16
|
elsn |
|- ( ( G ` { ( 0g ` P ) } ) e. { ( 0g ` P ) } <-> ( G ` { ( 0g ` P ) } ) = ( 0g ` P ) ) |
| 18 |
15 17
|
sylibr |
|- ( R e. DivRing -> ( G ` { ( 0g ` P ) } ) e. { ( 0g ` P ) } ) |
| 19 |
18
|
adantr |
|- ( ( R e. DivRing /\ I e. U ) -> ( G ` { ( 0g ` P ) } ) e. { ( 0g ` P ) } ) |
| 20 |
6 12 19
|
pm2.61ne |
|- ( ( R e. DivRing /\ I e. U ) -> ( G ` I ) e. I ) |