Metamath Proof Explorer


Theorem ply1annprmidl

Description: The set Q of polynomials annihilating an element A is a prime ideal. (Contributed by Thierry Arnoux, 9-Feb-2025)

Ref Expression
Hypotheses ply1annig1p.o O = E evalSub 1 F
ply1annig1p.p P = Poly 1 E 𝑠 F
ply1annig1p.b B = Base E
ply1annig1p.e φ E Field
ply1annig1p.f φ F SubDRing E
ply1annig1p.a φ A B
ply1annig1p.0 0 ˙ = 0 E
ply1annig1p.q Q = q dom O | O q A = 0 ˙
Assertion ply1annprmidl φ Q PrmIdeal P

Proof

Step Hyp Ref Expression
1 ply1annig1p.o O = E evalSub 1 F
2 ply1annig1p.p P = Poly 1 E 𝑠 F
3 ply1annig1p.b B = Base E
4 ply1annig1p.e φ E Field
5 ply1annig1p.f φ F SubDRing E
6 ply1annig1p.a φ A B
7 ply1annig1p.0 0 ˙ = 0 E
8 ply1annig1p.q Q = q dom O | O q A = 0 ˙
9 4 fldcrngd φ E CRing
10 issdrg F SubDRing E E DivRing F SubRing E E 𝑠 F DivRing
11 5 10 sylib φ E DivRing F SubRing E E 𝑠 F DivRing
12 11 simp2d φ F SubRing E
13 eqid p Base P O p A = p Base P O p A
14 1 2 3 9 12 6 7 8 13 ply1annidllem φ Q = p Base P O p A -1 0 ˙
15 eqid Base P = Base P
16 1 2 3 15 9 12 6 13 evls1maprhm φ p Base P O p A P RingHom E
17 fldidom E Field E IDomn
18 7 prmidl0 E CRing 0 ˙ PrmIdeal E E IDomn
19 18 biimpri E IDomn E CRing 0 ˙ PrmIdeal E
20 4 17 19 3syl φ E CRing 0 ˙ PrmIdeal E
21 20 simprd φ 0 ˙ PrmIdeal E
22 eqid PrmIdeal P = PrmIdeal P
23 22 rhmpreimaprmidl E CRing p Base P O p A P RingHom E 0 ˙ PrmIdeal E p Base P O p A -1 0 ˙ PrmIdeal P
24 9 16 21 23 syl21anc φ p Base P O p A -1 0 ˙ PrmIdeal P
25 14 24 eqeltrd φ Q PrmIdeal P