Step |
Hyp |
Ref |
Expression |
1 |
|
ply1annig1p.o |
|- O = ( E evalSub1 F ) |
2 |
|
ply1annig1p.p |
|- P = ( Poly1 ` ( E |`s F ) ) |
3 |
|
ply1annig1p.b |
|- B = ( Base ` E ) |
4 |
|
ply1annig1p.e |
|- ( ph -> E e. Field ) |
5 |
|
ply1annig1p.f |
|- ( ph -> F e. ( SubDRing ` E ) ) |
6 |
|
ply1annig1p.a |
|- ( ph -> A e. B ) |
7 |
|
ply1annig1p.0 |
|- .0. = ( 0g ` E ) |
8 |
|
ply1annig1p.q |
|- Q = { q e. dom O | ( ( O ` q ) ` A ) = .0. } |
9 |
4
|
fldcrngd |
|- ( ph -> E e. CRing ) |
10 |
|
issdrg |
|- ( F e. ( SubDRing ` E ) <-> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
11 |
5 10
|
sylib |
|- ( ph -> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
12 |
11
|
simp2d |
|- ( ph -> F e. ( SubRing ` E ) ) |
13 |
|
eqid |
|- ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) = ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) |
14 |
1 2 3 9 12 6 7 8 13
|
ply1annidllem |
|- ( ph -> Q = ( `' ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) " { .0. } ) ) |
15 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
16 |
1 2 3 15 9 12 6 13
|
evls1maprhm |
|- ( ph -> ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) e. ( P RingHom E ) ) |
17 |
|
fldidom |
|- ( E e. Field -> E e. IDomn ) |
18 |
7
|
prmidl0 |
|- ( ( E e. CRing /\ { .0. } e. ( PrmIdeal ` E ) ) <-> E e. IDomn ) |
19 |
18
|
biimpri |
|- ( E e. IDomn -> ( E e. CRing /\ { .0. } e. ( PrmIdeal ` E ) ) ) |
20 |
4 17 19
|
3syl |
|- ( ph -> ( E e. CRing /\ { .0. } e. ( PrmIdeal ` E ) ) ) |
21 |
20
|
simprd |
|- ( ph -> { .0. } e. ( PrmIdeal ` E ) ) |
22 |
|
eqid |
|- ( PrmIdeal ` P ) = ( PrmIdeal ` P ) |
23 |
22
|
rhmpreimaprmidl |
|- ( ( ( E e. CRing /\ ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) e. ( P RingHom E ) ) /\ { .0. } e. ( PrmIdeal ` E ) ) -> ( `' ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) " { .0. } ) e. ( PrmIdeal ` P ) ) |
24 |
9 16 21 23
|
syl21anc |
|- ( ph -> ( `' ( p e. ( Base ` P ) |-> ( ( O ` p ) ` A ) ) " { .0. } ) e. ( PrmIdeal ` P ) ) |
25 |
14 24
|
eqeltrd |
|- ( ph -> Q e. ( PrmIdeal ` P ) ) |