Step |
Hyp |
Ref |
Expression |
1 |
|
prmidl0.1 |
|- .0. = ( 0g ` R ) |
2 |
|
df-3an |
|- ( ( { .0. } e. ( LIdeal ` R ) /\ { .0. } =/= ( Base ` R ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. { .0. } -> ( x e. { .0. } \/ y e. { .0. } ) ) ) <-> ( ( { .0. } e. ( LIdeal ` R ) /\ { .0. } =/= ( Base ` R ) ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. { .0. } -> ( x e. { .0. } \/ y e. { .0. } ) ) ) ) |
3 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
4 |
3
|
ad2antrr |
|- ( ( ( R e. CRing /\ { .0. } e. ( LIdeal ` R ) ) /\ -. R e. NzRing ) -> R e. Ring ) |
5 |
|
0ringnnzr |
|- ( R e. Ring -> ( ( # ` ( Base ` R ) ) = 1 <-> -. R e. NzRing ) ) |
6 |
5
|
biimpar |
|- ( ( R e. Ring /\ -. R e. NzRing ) -> ( # ` ( Base ` R ) ) = 1 ) |
7 |
4 6
|
sylancom |
|- ( ( ( R e. CRing /\ { .0. } e. ( LIdeal ` R ) ) /\ -. R e. NzRing ) -> ( # ` ( Base ` R ) ) = 1 ) |
8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
9 |
8 1
|
0ring |
|- ( ( R e. Ring /\ ( # ` ( Base ` R ) ) = 1 ) -> ( Base ` R ) = { .0. } ) |
10 |
4 7 9
|
syl2anc |
|- ( ( ( R e. CRing /\ { .0. } e. ( LIdeal ` R ) ) /\ -. R e. NzRing ) -> ( Base ` R ) = { .0. } ) |
11 |
10
|
eqcomd |
|- ( ( ( R e. CRing /\ { .0. } e. ( LIdeal ` R ) ) /\ -. R e. NzRing ) -> { .0. } = ( Base ` R ) ) |
12 |
11
|
ex |
|- ( ( R e. CRing /\ { .0. } e. ( LIdeal ` R ) ) -> ( -. R e. NzRing -> { .0. } = ( Base ` R ) ) ) |
13 |
12
|
necon1ad |
|- ( ( R e. CRing /\ { .0. } e. ( LIdeal ` R ) ) -> ( { .0. } =/= ( Base ` R ) -> R e. NzRing ) ) |
14 |
13
|
impr |
|- ( ( R e. CRing /\ ( { .0. } e. ( LIdeal ` R ) /\ { .0. } =/= ( Base ` R ) ) ) -> R e. NzRing ) |
15 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
16 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
17 |
16 1
|
lidl0 |
|- ( R e. Ring -> { .0. } e. ( LIdeal ` R ) ) |
18 |
15 17
|
syl |
|- ( R e. NzRing -> { .0. } e. ( LIdeal ` R ) ) |
19 |
1
|
fvexi |
|- .0. e. _V |
20 |
|
hashsng |
|- ( .0. e. _V -> ( # ` { .0. } ) = 1 ) |
21 |
19 20
|
ax-mp |
|- ( # ` { .0. } ) = 1 |
22 |
|
1re |
|- 1 e. RR |
23 |
21 22
|
eqeltri |
|- ( # ` { .0. } ) e. RR |
24 |
23
|
a1i |
|- ( R e. NzRing -> ( # ` { .0. } ) e. RR ) |
25 |
8
|
isnzr2hash |
|- ( R e. NzRing <-> ( R e. Ring /\ 1 < ( # ` ( Base ` R ) ) ) ) |
26 |
25
|
simprbi |
|- ( R e. NzRing -> 1 < ( # ` ( Base ` R ) ) ) |
27 |
21 26
|
eqbrtrid |
|- ( R e. NzRing -> ( # ` { .0. } ) < ( # ` ( Base ` R ) ) ) |
28 |
24 27
|
ltned |
|- ( R e. NzRing -> ( # ` { .0. } ) =/= ( # ` ( Base ` R ) ) ) |
29 |
|
fveq2 |
|- ( { .0. } = ( Base ` R ) -> ( # ` { .0. } ) = ( # ` ( Base ` R ) ) ) |
30 |
29
|
necon3i |
|- ( ( # ` { .0. } ) =/= ( # ` ( Base ` R ) ) -> { .0. } =/= ( Base ` R ) ) |
31 |
28 30
|
syl |
|- ( R e. NzRing -> { .0. } =/= ( Base ` R ) ) |
32 |
18 31
|
jca |
|- ( R e. NzRing -> ( { .0. } e. ( LIdeal ` R ) /\ { .0. } =/= ( Base ` R ) ) ) |
33 |
32
|
adantl |
|- ( ( R e. CRing /\ R e. NzRing ) -> ( { .0. } e. ( LIdeal ` R ) /\ { .0. } =/= ( Base ` R ) ) ) |
34 |
14 33
|
impbida |
|- ( R e. CRing -> ( ( { .0. } e. ( LIdeal ` R ) /\ { .0. } =/= ( Base ` R ) ) <-> R e. NzRing ) ) |
35 |
19
|
elsn2 |
|- ( ( x ( .r ` R ) y ) e. { .0. } <-> ( x ( .r ` R ) y ) = .0. ) |
36 |
|
velsn |
|- ( x e. { .0. } <-> x = .0. ) |
37 |
|
velsn |
|- ( y e. { .0. } <-> y = .0. ) |
38 |
36 37
|
orbi12i |
|- ( ( x e. { .0. } \/ y e. { .0. } ) <-> ( x = .0. \/ y = .0. ) ) |
39 |
35 38
|
imbi12i |
|- ( ( ( x ( .r ` R ) y ) e. { .0. } -> ( x e. { .0. } \/ y e. { .0. } ) ) <-> ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) |
40 |
39
|
2ralbii |
|- ( A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. { .0. } -> ( x e. { .0. } \/ y e. { .0. } ) ) <-> A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) |
41 |
40
|
a1i |
|- ( R e. CRing -> ( A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. { .0. } -> ( x e. { .0. } \/ y e. { .0. } ) ) <-> A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
42 |
34 41
|
anbi12d |
|- ( R e. CRing -> ( ( ( { .0. } e. ( LIdeal ` R ) /\ { .0. } =/= ( Base ` R ) ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. { .0. } -> ( x e. { .0. } \/ y e. { .0. } ) ) ) <-> ( R e. NzRing /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) ) |
43 |
2 42
|
syl5bb |
|- ( R e. CRing -> ( ( { .0. } e. ( LIdeal ` R ) /\ { .0. } =/= ( Base ` R ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. { .0. } -> ( x e. { .0. } \/ y e. { .0. } ) ) ) <-> ( R e. NzRing /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) ) |
44 |
43
|
pm5.32i |
|- ( ( R e. CRing /\ ( { .0. } e. ( LIdeal ` R ) /\ { .0. } =/= ( Base ` R ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. { .0. } -> ( x e. { .0. } \/ y e. { .0. } ) ) ) ) <-> ( R e. CRing /\ ( R e. NzRing /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) ) |
45 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
46 |
8 45
|
isprmidlc |
|- ( R e. CRing -> ( { .0. } e. ( PrmIdeal ` R ) <-> ( { .0. } e. ( LIdeal ` R ) /\ { .0. } =/= ( Base ` R ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. { .0. } -> ( x e. { .0. } \/ y e. { .0. } ) ) ) ) ) |
47 |
46
|
pm5.32i |
|- ( ( R e. CRing /\ { .0. } e. ( PrmIdeal ` R ) ) <-> ( R e. CRing /\ ( { .0. } e. ( LIdeal ` R ) /\ { .0. } =/= ( Base ` R ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) e. { .0. } -> ( x e. { .0. } \/ y e. { .0. } ) ) ) ) ) |
48 |
|
df-idom |
|- IDomn = ( CRing i^i Domn ) |
49 |
48
|
eleq2i |
|- ( R e. IDomn <-> R e. ( CRing i^i Domn ) ) |
50 |
|
elin |
|- ( R e. ( CRing i^i Domn ) <-> ( R e. CRing /\ R e. Domn ) ) |
51 |
8 45 1
|
isdomn |
|- ( R e. Domn <-> ( R e. NzRing /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
52 |
51
|
anbi2i |
|- ( ( R e. CRing /\ R e. Domn ) <-> ( R e. CRing /\ ( R e. NzRing /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) ) |
53 |
49 50 52
|
3bitri |
|- ( R e. IDomn <-> ( R e. CRing /\ ( R e. NzRing /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) ) |
54 |
44 47 53
|
3bitr4i |
|- ( ( R e. CRing /\ { .0. } e. ( PrmIdeal ` R ) ) <-> R e. IDomn ) |