| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmidl0.1 |
|
| 2 |
|
df-3an |
|
| 3 |
|
crngring |
|
| 4 |
3
|
ad2antrr |
|
| 5 |
|
0ringnnzr |
|
| 6 |
5
|
biimpar |
|
| 7 |
4 6
|
sylancom |
|
| 8 |
|
eqid |
|
| 9 |
8 1
|
0ring |
|
| 10 |
4 7 9
|
syl2anc |
|
| 11 |
10
|
eqcomd |
|
| 12 |
11
|
ex |
|
| 13 |
12
|
necon1ad |
|
| 14 |
13
|
impr |
|
| 15 |
|
nzrring |
|
| 16 |
|
eqid |
|
| 17 |
16 1
|
lidl0 |
|
| 18 |
15 17
|
syl |
|
| 19 |
1
|
fvexi |
|
| 20 |
|
hashsng |
|
| 21 |
19 20
|
ax-mp |
|
| 22 |
|
1re |
|
| 23 |
21 22
|
eqeltri |
|
| 24 |
23
|
a1i |
|
| 25 |
8
|
isnzr2hash |
|
| 26 |
25
|
simprbi |
|
| 27 |
21 26
|
eqbrtrid |
|
| 28 |
24 27
|
ltned |
|
| 29 |
|
fveq2 |
|
| 30 |
29
|
necon3i |
|
| 31 |
28 30
|
syl |
|
| 32 |
18 31
|
jca |
|
| 33 |
32
|
adantl |
|
| 34 |
14 33
|
impbida |
|
| 35 |
19
|
elsn2 |
|
| 36 |
|
velsn |
|
| 37 |
|
velsn |
|
| 38 |
36 37
|
orbi12i |
|
| 39 |
35 38
|
imbi12i |
|
| 40 |
39
|
2ralbii |
|
| 41 |
40
|
a1i |
|
| 42 |
34 41
|
anbi12d |
|
| 43 |
2 42
|
bitrid |
|
| 44 |
43
|
pm5.32i |
|
| 45 |
|
eqid |
|
| 46 |
8 45
|
isprmidlc |
|
| 47 |
46
|
pm5.32i |
|
| 48 |
|
df-idom |
|
| 49 |
48
|
eleq2i |
|
| 50 |
|
elin |
|
| 51 |
8 45 1
|
isdomn |
|
| 52 |
51
|
anbi2i |
|
| 53 |
49 50 52
|
3bitri |
|
| 54 |
44 47 53
|
3bitr4i |
|