Step |
Hyp |
Ref |
Expression |
1 |
|
rhmpreimaprmidl.p |
|
2 |
|
rhmrcl1 |
|
3 |
2
|
ad2antlr |
|
4 |
|
rhmrcl2 |
|
5 |
|
prmidlidl |
|
6 |
4 5
|
sylan |
|
7 |
|
eqid |
|
8 |
7
|
rhmpreimaidl |
|
9 |
6 8
|
syldan |
|
10 |
9
|
adantll |
|
11 |
4
|
adantr |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
12 13
|
prmidlnr |
|
15 |
4 14
|
sylan |
|
16 |
|
eqid |
|
17 |
12 16
|
pridln1 |
|
18 |
11 6 15 17
|
syl3anc |
|
19 |
|
eqid |
|
20 |
19 16
|
rhm1 |
|
21 |
20
|
ad2antrr |
|
22 |
|
eqid |
|
23 |
22 12
|
rhmf |
|
24 |
23
|
ffnd |
|
25 |
24
|
ad2antrr |
|
26 |
22 19
|
ringidcl |
|
27 |
2 26
|
syl |
|
28 |
27
|
ad2antrr |
|
29 |
|
simpr |
|
30 |
28 29
|
eleqtrrd |
|
31 |
|
elpreima |
|
32 |
31
|
biimpa |
|
33 |
25 30 32
|
syl2anc |
|
34 |
33
|
simprd |
|
35 |
21 34
|
eqeltrrd |
|
36 |
18 35
|
mtand |
|
37 |
36
|
neqned |
|
38 |
37
|
adantll |
|
39 |
|
simp-5l |
|
40 |
|
simp-4r |
|
41 |
|
simp-5r |
|
42 |
41 23
|
syl |
|
43 |
|
simpllr |
|
44 |
42 43
|
ffvelcdmd |
|
45 |
|
simplr |
|
46 |
42 45
|
ffvelcdmd |
|
47 |
|
eqid |
|
48 |
22 47 13
|
rhmmul |
|
49 |
41 43 45 48
|
syl3anc |
|
50 |
24
|
ad5antlr |
|
51 |
|
simpr |
|
52 |
|
elpreima |
|
53 |
52
|
simplbda |
|
54 |
50 51 53
|
syl2anc |
|
55 |
49 54
|
eqeltrrd |
|
56 |
12 13
|
prmidlc |
|
57 |
39 40 44 46 55 56
|
syl23anc |
|
58 |
50
|
adantr |
|
59 |
43
|
adantr |
|
60 |
|
simpr |
|
61 |
58 59 60
|
elpreimad |
|
62 |
61
|
ex |
|
63 |
50
|
adantr |
|
64 |
|
simpllr |
|
65 |
|
simpr |
|
66 |
63 64 65
|
elpreimad |
|
67 |
66
|
ex |
|
68 |
62 67
|
orim12d |
|
69 |
57 68
|
mpd |
|
70 |
69
|
ex |
|
71 |
70
|
anasss |
|
72 |
71
|
ralrimivva |
|
73 |
22 47
|
prmidl2 |
|
74 |
3 10 38 72 73
|
syl22anc |
|
75 |
74 1
|
eleqtrrdi |
|