Metamath Proof Explorer


Theorem rhmpreimaprmidl

Description: The preimage of a prime ideal by a ring homomorphism is a prime ideal. (Contributed by Thierry Arnoux, 29-Jun-2024)

Ref Expression
Hypothesis rhmpreimaprmidl.p P = PrmIdeal R
Assertion rhmpreimaprmidl S CRing F R RingHom S J PrmIdeal S F -1 J P

Proof

Step Hyp Ref Expression
1 rhmpreimaprmidl.p P = PrmIdeal R
2 rhmrcl1 F R RingHom S R Ring
3 2 ad2antlr S CRing F R RingHom S J PrmIdeal S R Ring
4 rhmrcl2 F R RingHom S S Ring
5 prmidlidl S Ring J PrmIdeal S J LIdeal S
6 4 5 sylan F R RingHom S J PrmIdeal S J LIdeal S
7 eqid LIdeal R = LIdeal R
8 7 rhmpreimaidl F R RingHom S J LIdeal S F -1 J LIdeal R
9 6 8 syldan F R RingHom S J PrmIdeal S F -1 J LIdeal R
10 9 adantll S CRing F R RingHom S J PrmIdeal S F -1 J LIdeal R
11 4 adantr F R RingHom S J PrmIdeal S S Ring
12 eqid Base S = Base S
13 eqid S = S
14 12 13 prmidlnr S Ring J PrmIdeal S J Base S
15 4 14 sylan F R RingHom S J PrmIdeal S J Base S
16 eqid 1 S = 1 S
17 12 16 pridln1 S Ring J LIdeal S J Base S ¬ 1 S J
18 11 6 15 17 syl3anc F R RingHom S J PrmIdeal S ¬ 1 S J
19 eqid 1 R = 1 R
20 19 16 rhm1 F R RingHom S F 1 R = 1 S
21 20 ad2antrr F R RingHom S J PrmIdeal S F -1 J = Base R F 1 R = 1 S
22 eqid Base R = Base R
23 22 12 rhmf F R RingHom S F : Base R Base S
24 23 ffnd F R RingHom S F Fn Base R
25 24 ad2antrr F R RingHom S J PrmIdeal S F -1 J = Base R F Fn Base R
26 22 19 ringidcl R Ring 1 R Base R
27 2 26 syl F R RingHom S 1 R Base R
28 27 ad2antrr F R RingHom S J PrmIdeal S F -1 J = Base R 1 R Base R
29 simpr F R RingHom S J PrmIdeal S F -1 J = Base R F -1 J = Base R
30 28 29 eleqtrrd F R RingHom S J PrmIdeal S F -1 J = Base R 1 R F -1 J
31 elpreima F Fn Base R 1 R F -1 J 1 R Base R F 1 R J
32 31 biimpa F Fn Base R 1 R F -1 J 1 R Base R F 1 R J
33 25 30 32 syl2anc F R RingHom S J PrmIdeal S F -1 J = Base R 1 R Base R F 1 R J
34 33 simprd F R RingHom S J PrmIdeal S F -1 J = Base R F 1 R J
35 21 34 eqeltrrd F R RingHom S J PrmIdeal S F -1 J = Base R 1 S J
36 18 35 mtand F R RingHom S J PrmIdeal S ¬ F -1 J = Base R
37 36 neqned F R RingHom S J PrmIdeal S F -1 J Base R
38 37 adantll S CRing F R RingHom S J PrmIdeal S F -1 J Base R
39 simp-5l S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J S CRing
40 simp-4r S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J J PrmIdeal S
41 simp-5r S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J F R RingHom S
42 41 23 syl S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J F : Base R Base S
43 simpllr S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J a Base R
44 42 43 ffvelcdmd S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J F a Base S
45 simplr S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J b Base R
46 42 45 ffvelcdmd S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J F b Base S
47 eqid R = R
48 22 47 13 rhmmul F R RingHom S a Base R b Base R F a R b = F a S F b
49 41 43 45 48 syl3anc S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J F a R b = F a S F b
50 24 ad5antlr S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J F Fn Base R
51 simpr S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J a R b F -1 J
52 elpreima F Fn Base R a R b F -1 J a R b Base R F a R b J
53 52 simplbda F Fn Base R a R b F -1 J F a R b J
54 50 51 53 syl2anc S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J F a R b J
55 49 54 eqeltrrd S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J F a S F b J
56 12 13 prmidlc S CRing J PrmIdeal S F a Base S F b Base S F a S F b J F a J F b J
57 39 40 44 46 55 56 syl23anc S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J F a J F b J
58 50 adantr S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J F a J F Fn Base R
59 43 adantr S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J F a J a Base R
60 simpr S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J F a J F a J
61 58 59 60 elpreimad S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J F a J a F -1 J
62 61 ex S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J F a J a F -1 J
63 50 adantr S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J F b J F Fn Base R
64 simpllr S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J F b J b Base R
65 simpr S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J F b J F b J
66 63 64 65 elpreimad S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J F b J b F -1 J
67 66 ex S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J F b J b F -1 J
68 62 67 orim12d S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J F a J F b J a F -1 J b F -1 J
69 57 68 mpd S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J a F -1 J b F -1 J
70 69 ex S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J a F -1 J b F -1 J
71 70 anasss S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J a F -1 J b F -1 J
72 71 ralrimivva S CRing F R RingHom S J PrmIdeal S a Base R b Base R a R b F -1 J a F -1 J b F -1 J
73 22 47 prmidl2 R Ring F -1 J LIdeal R F -1 J Base R a Base R b Base R a R b F -1 J a F -1 J b F -1 J F -1 J PrmIdeal R
74 3 10 38 72 73 syl22anc S CRing F R RingHom S J PrmIdeal S F -1 J PrmIdeal R
75 74 1 eleqtrrdi S CRing F R RingHom S J PrmIdeal S F -1 J P