| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmpreimaprmidl.p |
|
| 2 |
|
rhmrcl1 |
|
| 3 |
2
|
ad2antlr |
|
| 4 |
|
rhmrcl2 |
|
| 5 |
|
prmidlidl |
|
| 6 |
4 5
|
sylan |
|
| 7 |
|
eqid |
|
| 8 |
7
|
rhmpreimaidl |
|
| 9 |
6 8
|
syldan |
|
| 10 |
9
|
adantll |
|
| 11 |
4
|
adantr |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
12 13
|
prmidlnr |
|
| 15 |
4 14
|
sylan |
|
| 16 |
|
eqid |
|
| 17 |
12 16
|
pridln1 |
|
| 18 |
11 6 15 17
|
syl3anc |
|
| 19 |
|
eqid |
|
| 20 |
19 16
|
rhm1 |
|
| 21 |
20
|
ad2antrr |
|
| 22 |
|
eqid |
|
| 23 |
22 12
|
rhmf |
|
| 24 |
23
|
ffnd |
|
| 25 |
24
|
ad2antrr |
|
| 26 |
22 19
|
ringidcl |
|
| 27 |
2 26
|
syl |
|
| 28 |
27
|
ad2antrr |
|
| 29 |
|
simpr |
|
| 30 |
28 29
|
eleqtrrd |
|
| 31 |
|
elpreima |
|
| 32 |
31
|
biimpa |
|
| 33 |
25 30 32
|
syl2anc |
|
| 34 |
33
|
simprd |
|
| 35 |
21 34
|
eqeltrrd |
|
| 36 |
18 35
|
mtand |
|
| 37 |
36
|
neqned |
|
| 38 |
37
|
adantll |
|
| 39 |
|
simp-5l |
|
| 40 |
|
simp-4r |
|
| 41 |
|
simp-5r |
|
| 42 |
41 23
|
syl |
|
| 43 |
|
simpllr |
|
| 44 |
42 43
|
ffvelcdmd |
|
| 45 |
|
simplr |
|
| 46 |
42 45
|
ffvelcdmd |
|
| 47 |
|
eqid |
|
| 48 |
22 47 13
|
rhmmul |
|
| 49 |
41 43 45 48
|
syl3anc |
|
| 50 |
24
|
ad5antlr |
|
| 51 |
|
simpr |
|
| 52 |
|
elpreima |
|
| 53 |
52
|
simplbda |
|
| 54 |
50 51 53
|
syl2anc |
|
| 55 |
49 54
|
eqeltrrd |
|
| 56 |
12 13
|
prmidlc |
|
| 57 |
39 40 44 46 55 56
|
syl23anc |
|
| 58 |
50
|
adantr |
|
| 59 |
43
|
adantr |
|
| 60 |
|
simpr |
|
| 61 |
58 59 60
|
elpreimad |
|
| 62 |
61
|
ex |
|
| 63 |
50
|
adantr |
|
| 64 |
|
simpllr |
|
| 65 |
|
simpr |
|
| 66 |
63 64 65
|
elpreimad |
|
| 67 |
66
|
ex |
|
| 68 |
62 67
|
orim12d |
|
| 69 |
57 68
|
mpd |
|
| 70 |
69
|
ex |
|
| 71 |
70
|
anasss |
|
| 72 |
71
|
ralrimivva |
|
| 73 |
22 47
|
prmidl2 |
|
| 74 |
3 10 38 72 73
|
syl22anc |
|
| 75 |
74 1
|
eleqtrrdi |
|