| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmidlval.1 |
|
| 2 |
|
prmidlval.2 |
|
| 3 |
|
simpr |
|
| 4 |
|
simplrr |
|
| 5 |
|
eqid |
|
| 6 |
1 5
|
lidlss |
|
| 7 |
4 6
|
syl |
|
| 8 |
|
simplrl |
|
| 9 |
1 5
|
lidlss |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
simpllr |
|
| 12 |
|
ssralv |
|
| 13 |
10 11 12
|
sylc |
|
| 14 |
|
ssralv |
|
| 15 |
14
|
ralimdv |
|
| 16 |
7 13 15
|
sylc |
|
| 17 |
|
r19.26-2 |
|
| 18 |
|
pm3.35 |
|
| 19 |
18
|
2ralimi |
|
| 20 |
17 19
|
sylbir |
|
| 21 |
3 16 20
|
syl2anc |
|
| 22 |
|
2ralor |
|
| 23 |
|
dfss3 |
|
| 24 |
|
dfss3 |
|
| 25 |
23 24
|
orbi12i |
|
| 26 |
22 25
|
sylbb2 |
|
| 27 |
21 26
|
syl |
|
| 28 |
27
|
ex |
|
| 29 |
28
|
ralrimivva |
|
| 30 |
1 2
|
isprmidl |
|
| 31 |
30
|
biimpar |
|
| 32 |
31
|
3anassrs |
|
| 33 |
29 32
|
syldan |
|
| 34 |
33
|
anasss |
|