Metamath Proof Explorer


Theorem ispridlc

Description: The predicate "is a prime ideal". Alternate definition for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses ispridlc.1 G=1stR
ispridlc.2 H=2ndR
ispridlc.3 X=ranG
Assertion ispridlc RCRingOpsPPrIdlRPIdlRPXaXbXaHbPaPbP

Proof

Step Hyp Ref Expression
1 ispridlc.1 G=1stR
2 ispridlc.2 H=2ndR
3 ispridlc.3 X=ranG
4 crngorngo RCRingOpsRRingOps
5 1 2 3 ispridl RRingOpsPPrIdlRPIdlRPXrIdlRsIdlRxrysxHyPrPsP
6 4 5 syl RCRingOpsPPrIdlRPIdlRPXrIdlRsIdlRxrysxHyPrPsP
7 snssi aXaX
8 1 3 igenidl RRingOpsaXRIdlGenaIdlR
9 4 7 8 syl2an RCRingOpsaXRIdlGenaIdlR
10 9 adantrr RCRingOpsaXbXRIdlGenaIdlR
11 snssi bXbX
12 1 3 igenidl RRingOpsbXRIdlGenbIdlR
13 4 11 12 syl2an RCRingOpsbXRIdlGenbIdlR
14 13 adantrl RCRingOpsaXbXRIdlGenbIdlR
15 raleq r=RIdlGenaxrysxHyPxRIdlGenaysxHyP
16 sseq1 r=RIdlGenarPRIdlGenaP
17 16 orbi1d r=RIdlGenarPsPRIdlGenaPsP
18 15 17 imbi12d r=RIdlGenaxrysxHyPrPsPxRIdlGenaysxHyPRIdlGenaPsP
19 raleq s=RIdlGenbysxHyPyRIdlGenbxHyP
20 19 ralbidv s=RIdlGenbxRIdlGenaysxHyPxRIdlGenayRIdlGenbxHyP
21 sseq1 s=RIdlGenbsPRIdlGenbP
22 21 orbi2d s=RIdlGenbRIdlGenaPsPRIdlGenaPRIdlGenbP
23 20 22 imbi12d s=RIdlGenbxRIdlGenaysxHyPRIdlGenaPsPxRIdlGenayRIdlGenbxHyPRIdlGenaPRIdlGenbP
24 18 23 rspc2v RIdlGenaIdlRRIdlGenbIdlRrIdlRsIdlRxrysxHyPrPsPxRIdlGenayRIdlGenbxHyPRIdlGenaPRIdlGenbP
25 10 14 24 syl2anc RCRingOpsaXbXrIdlRsIdlRxrysxHyPrPsPxRIdlGenayRIdlGenbxHyPRIdlGenaPRIdlGenbP
26 25 adantlr RCRingOpsPIdlRaXbXrIdlRsIdlRxrysxHyPrPsPxRIdlGenayRIdlGenbxHyPRIdlGenaPRIdlGenbP
27 1 2 3 prnc RCRingOpsaXRIdlGena=xX|rXx=rHa
28 df-rab xX|rXx=rHa=x|xXrXx=rHa
29 27 28 eqtrdi RCRingOpsaXRIdlGena=x|xXrXx=rHa
30 29 eqabrd RCRingOpsaXxRIdlGenaxXrXx=rHa
31 30 adantrr RCRingOpsaXbXxRIdlGenaxXrXx=rHa
32 1 2 3 prnc RCRingOpsbXRIdlGenb=yX|sXy=sHb
33 df-rab yX|sXy=sHb=y|yXsXy=sHb
34 32 33 eqtrdi RCRingOpsbXRIdlGenb=y|yXsXy=sHb
35 34 eqabrd RCRingOpsbXyRIdlGenbyXsXy=sHb
36 35 adantrl RCRingOpsaXbXyRIdlGenbyXsXy=sHb
37 31 36 anbi12d RCRingOpsaXbXxRIdlGenayRIdlGenbxXrXx=rHayXsXy=sHb
38 37 adantlr RCRingOpsPIdlRaXbXxRIdlGenayRIdlGenbxXrXx=rHayXsXy=sHb
39 38 adantr RCRingOpsPIdlRaXbXaHbPxRIdlGenayRIdlGenbxXrXx=rHayXsXy=sHb
40 reeanv rXsXx=rHay=sHbrXx=rHasXy=sHb
41 40 anbi2i xXyXrXsXx=rHay=sHbxXyXrXx=rHasXy=sHb
42 an4 xXyXrXx=rHasXy=sHbxXrXx=rHayXsXy=sHb
43 41 42 bitri xXyXrXsXx=rHay=sHbxXrXx=rHayXsXy=sHb
44 1 2 3 crngm4 RCRingOpsrXsXaXbXrHsHaHb=rHaHsHb
45 44 3com23 RCRingOpsaXbXrXsXrHsHaHb=rHaHsHb
46 45 3expa RCRingOpsaXbXrXsXrHsHaHb=rHaHsHb
47 46 adantllr RCRingOpsPIdlRaXbXrXsXrHsHaHb=rHaHsHb
48 47 adantlr RCRingOpsPIdlRaXbXaHbPrXsXrHsHaHb=rHaHsHb
49 1 2 3 rngocl RRingOpsrXsXrHsX
50 4 49 syl3an1 RCRingOpsrXsXrHsX
51 50 3expb RCRingOpsrXsXrHsX
52 51 adantlr RCRingOpsPIdlRrXsXrHsX
53 52 adantlr RCRingOpsPIdlRaHbPrXsXrHsX
54 1 2 3 idllmulcl RRingOpsPIdlRaHbPrHsXrHsHaHbP
55 4 54 sylanl1 RCRingOpsPIdlRaHbPrHsXrHsHaHbP
56 55 anassrs RCRingOpsPIdlRaHbPrHsXrHsHaHbP
57 53 56 syldan RCRingOpsPIdlRaHbPrXsXrHsHaHbP
58 57 adantllr RCRingOpsPIdlRaXbXaHbPrXsXrHsHaHbP
59 48 58 eqeltrrd RCRingOpsPIdlRaXbXaHbPrXsXrHaHsHbP
60 oveq12 x=rHay=sHbxHy=rHaHsHb
61 60 eleq1d x=rHay=sHbxHyPrHaHsHbP
62 59 61 syl5ibrcom RCRingOpsPIdlRaXbXaHbPrXsXx=rHay=sHbxHyP
63 62 rexlimdvva RCRingOpsPIdlRaXbXaHbPrXsXx=rHay=sHbxHyP
64 63 adantld RCRingOpsPIdlRaXbXaHbPxXyXrXsXx=rHay=sHbxHyP
65 43 64 biimtrrid RCRingOpsPIdlRaXbXaHbPxXrXx=rHayXsXy=sHbxHyP
66 39 65 sylbid RCRingOpsPIdlRaXbXaHbPxRIdlGenayRIdlGenbxHyP
67 66 ralrimivv RCRingOpsPIdlRaXbXaHbPxRIdlGenayRIdlGenbxHyP
68 67 ex RCRingOpsPIdlRaXbXaHbPxRIdlGenayRIdlGenbxHyP
69 1 3 igenss RRingOpsaXaRIdlGena
70 4 7 69 syl2an RCRingOpsaXaRIdlGena
71 vex aV
72 71 snss aRIdlGenaaRIdlGena
73 70 72 sylibr RCRingOpsaXaRIdlGena
74 73 adantrr RCRingOpsaXbXaRIdlGena
75 ssel RIdlGenaPaRIdlGenaaP
76 74 75 syl5com RCRingOpsaXbXRIdlGenaPaP
77 1 3 igenss RRingOpsbXbRIdlGenb
78 4 11 77 syl2an RCRingOpsbXbRIdlGenb
79 vex bV
80 79 snss bRIdlGenbbRIdlGenb
81 78 80 sylibr RCRingOpsbXbRIdlGenb
82 81 adantrl RCRingOpsaXbXbRIdlGenb
83 ssel RIdlGenbPbRIdlGenbbP
84 82 83 syl5com RCRingOpsaXbXRIdlGenbPbP
85 76 84 orim12d RCRingOpsaXbXRIdlGenaPRIdlGenbPaPbP
86 85 adantlr RCRingOpsPIdlRaXbXRIdlGenaPRIdlGenbPaPbP
87 68 86 imim12d RCRingOpsPIdlRaXbXxRIdlGenayRIdlGenbxHyPRIdlGenaPRIdlGenbPaHbPaPbP
88 26 87 syld RCRingOpsPIdlRaXbXrIdlRsIdlRxrysxHyPrPsPaHbPaPbP
89 88 ralrimdvva RCRingOpsPIdlRrIdlRsIdlRxrysxHyPrPsPaXbXaHbPaPbP
90 89 ex RCRingOpsPIdlRrIdlRsIdlRxrysxHyPrPsPaXbXaHbPaPbP
91 90 adantrd RCRingOpsPIdlRPXrIdlRsIdlRxrysxHyPrPsPaXbXaHbPaPbP
92 91 imdistand RCRingOpsPIdlRPXrIdlRsIdlRxrysxHyPrPsPPIdlRPXaXbXaHbPaPbP
93 df-3an PIdlRPXrIdlRsIdlRxrysxHyPrPsPPIdlRPXrIdlRsIdlRxrysxHyPrPsP
94 df-3an PIdlRPXaXbXaHbPaPbPPIdlRPXaXbXaHbPaPbP
95 92 93 94 3imtr4g RCRingOpsPIdlRPXrIdlRsIdlRxrysxHyPrPsPPIdlRPXaXbXaHbPaPbP
96 6 95 sylbid RCRingOpsPPrIdlRPIdlRPXaXbXaHbPaPbP
97 1 2 3 ispridl2 RRingOpsPIdlRPXaXbXaHbPaPbPPPrIdlR
98 97 ex RRingOpsPIdlRPXaXbXaHbPaPbPPPrIdlR
99 4 98 syl RCRingOpsPIdlRPXaXbXaHbPaPbPPPrIdlR
100 96 99 impbid RCRingOpsPPrIdlRPIdlRPXaXbXaHbPaPbP