Metamath Proof Explorer


Theorem pridlc

Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011)

Ref Expression
Hypotheses ispridlc.1 G=1stR
ispridlc.2 H=2ndR
ispridlc.3 X=ranG
Assertion pridlc RCRingOpsPPrIdlRAXBXAHBPAPBP

Proof

Step Hyp Ref Expression
1 ispridlc.1 G=1stR
2 ispridlc.2 H=2ndR
3 ispridlc.3 X=ranG
4 1 2 3 ispridlc RCRingOpsPPrIdlRPIdlRPXaXbXaHbPaPbP
5 4 biimpa RCRingOpsPPrIdlRPIdlRPXaXbXaHbPaPbP
6 5 simp3d RCRingOpsPPrIdlRaXbXaHbPaPbP
7 oveq1 a=AaHb=AHb
8 7 eleq1d a=AaHbPAHbP
9 eleq1 a=AaPAP
10 9 orbi1d a=AaPbPAPbP
11 8 10 imbi12d a=AaHbPaPbPAHbPAPbP
12 oveq2 b=BAHb=AHB
13 12 eleq1d b=BAHbPAHBP
14 eleq1 b=BbPBP
15 14 orbi2d b=BAPbPAPBP
16 13 15 imbi12d b=BAHbPAPbPAHBPAPBP
17 11 16 rspc2v AXBXaXbXaHbPaPbPAHBPAPBP
18 17 com12 aXbXaHbPaPbPAXBXAHBPAPBP
19 18 expd aXbXaHbPaPbPAXBXAHBPAPBP
20 19 3imp2 aXbXaHbPaPbPAXBXAHBPAPBP
21 6 20 sylan RCRingOpsPPrIdlRAXBXAHBPAPBP