Metamath Proof Explorer


Theorem pridlc

Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011)

Ref Expression
Hypotheses ispridlc.1 G = 1 st R
ispridlc.2 H = 2 nd R
ispridlc.3 X = ran G
Assertion pridlc R CRingOps P PrIdl R A X B X A H B P A P B P

Proof

Step Hyp Ref Expression
1 ispridlc.1 G = 1 st R
2 ispridlc.2 H = 2 nd R
3 ispridlc.3 X = ran G
4 1 2 3 ispridlc R CRingOps P PrIdl R P Idl R P X a X b X a H b P a P b P
5 4 biimpa R CRingOps P PrIdl R P Idl R P X a X b X a H b P a P b P
6 5 simp3d R CRingOps P PrIdl R a X b X a H b P a P b P
7 oveq1 a = A a H b = A H b
8 7 eleq1d a = A a H b P A H b P
9 eleq1 a = A a P A P
10 9 orbi1d a = A a P b P A P b P
11 8 10 imbi12d a = A a H b P a P b P A H b P A P b P
12 oveq2 b = B A H b = A H B
13 12 eleq1d b = B A H b P A H B P
14 eleq1 b = B b P B P
15 14 orbi2d b = B A P b P A P B P
16 13 15 imbi12d b = B A H b P A P b P A H B P A P B P
17 11 16 rspc2v A X B X a X b X a H b P a P b P A H B P A P B P
18 17 com12 a X b X a H b P a P b P A X B X A H B P A P B P
19 18 expd a X b X a H b P a P b P A X B X A H B P A P B P
20 19 3imp2 a X b X a H b P a P b P A X B X A H B P A P B P
21 6 20 sylan R CRingOps P PrIdl R A X B X A H B P A P B P