Step |
Hyp |
Ref |
Expression |
1 |
|
ispridlc.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
ispridlc.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
3 |
|
ispridlc.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
1 2 3
|
ispridlc |
⊢ ( 𝑅 ∈ CRingOps → ( 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ↔ ( 𝑃 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑃 ≠ 𝑋 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) ∈ 𝑃 → ( 𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ) ) ) ) |
5 |
4
|
biimpa |
⊢ ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) → ( 𝑃 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑃 ≠ 𝑋 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) ∈ 𝑃 → ( 𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ) ) ) |
6 |
5
|
simp3d |
⊢ ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) → ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) ∈ 𝑃 → ( 𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ) ) |
7 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 𝐻 𝑏 ) = ( 𝐴 𝐻 𝑏 ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 𝐻 𝑏 ) ∈ 𝑃 ↔ ( 𝐴 𝐻 𝑏 ) ∈ 𝑃 ) ) |
9 |
|
eleq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ∈ 𝑃 ↔ 𝐴 ∈ 𝑃 ) ) |
10 |
9
|
orbi1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ↔ ( 𝐴 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ) ) |
11 |
8 10
|
imbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑎 𝐻 𝑏 ) ∈ 𝑃 → ( 𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ) ↔ ( ( 𝐴 𝐻 𝑏 ) ∈ 𝑃 → ( 𝐴 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ) ) ) |
12 |
|
oveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐴 𝐻 𝑏 ) = ( 𝐴 𝐻 𝐵 ) ) |
13 |
12
|
eleq1d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 𝐻 𝑏 ) ∈ 𝑃 ↔ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) ) |
14 |
|
eleq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 ∈ 𝑃 ↔ 𝐵 ∈ 𝑃 ) ) |
15 |
14
|
orbi2d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ↔ ( 𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃 ) ) ) |
16 |
13 15
|
imbi12d |
⊢ ( 𝑏 = 𝐵 → ( ( ( 𝐴 𝐻 𝑏 ) ∈ 𝑃 → ( 𝐴 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ) ↔ ( ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 → ( 𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃 ) ) ) ) |
17 |
11 16
|
rspc2v |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) ∈ 𝑃 → ( 𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ) → ( ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 → ( 𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃 ) ) ) ) |
18 |
17
|
com12 |
⊢ ( ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) ∈ 𝑃 → ( 𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 → ( 𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃 ) ) ) ) |
19 |
18
|
expd |
⊢ ( ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) ∈ 𝑃 → ( 𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ) → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 → ( 𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃 ) ) ) ) ) |
20 |
19
|
3imp2 |
⊢ ( ( ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) ∈ 𝑃 → ( 𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) ) → ( 𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃 ) ) |
21 |
6 20
|
sylan |
⊢ ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) ) → ( 𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃 ) ) |