Step |
Hyp |
Ref |
Expression |
1 |
|
ispridlc.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
ispridlc.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
3 |
|
ispridlc.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
|
eldifn |
⊢ ( 𝐴 ∈ ( 𝑋 ∖ 𝑃 ) → ¬ 𝐴 ∈ 𝑃 ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( 𝑋 ∖ 𝑃 ) ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) → ¬ 𝐴 ∈ 𝑃 ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋 ∖ 𝑃 ) ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) ) → ¬ 𝐴 ∈ 𝑃 ) |
7 |
|
eldifi |
⊢ ( 𝐴 ∈ ( 𝑋 ∖ 𝑃 ) → 𝐴 ∈ 𝑋 ) |
8 |
1 2 3
|
pridlc |
⊢ ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) ) → ( 𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃 ) ) |
9 |
8
|
ord |
⊢ ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) ) → ( ¬ 𝐴 ∈ 𝑃 → 𝐵 ∈ 𝑃 ) ) |
10 |
7 9
|
syl3anr1 |
⊢ ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋 ∖ 𝑃 ) ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) ) → ( ¬ 𝐴 ∈ 𝑃 → 𝐵 ∈ 𝑃 ) ) |
11 |
6 10
|
mpd |
⊢ ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋 ∖ 𝑃 ) ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) ) → 𝐵 ∈ 𝑃 ) |