Metamath Proof Explorer


Theorem pridlc2

Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011)

Ref Expression
Hypotheses ispridlc.1 𝐺 = ( 1st𝑅 )
ispridlc.2 𝐻 = ( 2nd𝑅 )
ispridlc.3 𝑋 = ran 𝐺
Assertion pridlc2 ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋𝑃 ) ∧ 𝐵𝑋 ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) ) → 𝐵𝑃 )

Proof

Step Hyp Ref Expression
1 ispridlc.1 𝐺 = ( 1st𝑅 )
2 ispridlc.2 𝐻 = ( 2nd𝑅 )
3 ispridlc.3 𝑋 = ran 𝐺
4 eldifn ( 𝐴 ∈ ( 𝑋𝑃 ) → ¬ 𝐴𝑃 )
5 4 3ad2ant1 ( ( 𝐴 ∈ ( 𝑋𝑃 ) ∧ 𝐵𝑋 ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) → ¬ 𝐴𝑃 )
6 5 adantl ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋𝑃 ) ∧ 𝐵𝑋 ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) ) → ¬ 𝐴𝑃 )
7 eldifi ( 𝐴 ∈ ( 𝑋𝑃 ) → 𝐴𝑋 )
8 1 2 3 pridlc ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴𝑋𝐵𝑋 ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) ) → ( 𝐴𝑃𝐵𝑃 ) )
9 8 ord ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴𝑋𝐵𝑋 ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) ) → ( ¬ 𝐴𝑃𝐵𝑃 ) )
10 7 9 syl3anr1 ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋𝑃 ) ∧ 𝐵𝑋 ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) ) → ( ¬ 𝐴𝑃𝐵𝑃 ) )
11 6 10 mpd ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋𝑃 ) ∧ 𝐵𝑋 ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) ) → 𝐵𝑃 )