Metamath Proof Explorer


Theorem pridlc3

Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011)

Ref Expression
Hypotheses ispridlc.1 𝐺 = ( 1st𝑅 )
ispridlc.2 𝐻 = ( 2nd𝑅 )
ispridlc.3 𝑋 = ran 𝐺
Assertion pridlc3 ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋𝑃 ) ∧ 𝐵 ∈ ( 𝑋𝑃 ) ) ) → ( 𝐴 𝐻 𝐵 ) ∈ ( 𝑋𝑃 ) )

Proof

Step Hyp Ref Expression
1 ispridlc.1 𝐺 = ( 1st𝑅 )
2 ispridlc.2 𝐻 = ( 2nd𝑅 )
3 ispridlc.3 𝑋 = ran 𝐺
4 crngorngo ( 𝑅 ∈ CRingOps → 𝑅 ∈ RingOps )
5 eldifi ( 𝐴 ∈ ( 𝑋𝑃 ) → 𝐴𝑋 )
6 eldifi ( 𝐵 ∈ ( 𝑋𝑃 ) → 𝐵𝑋 )
7 5 6 anim12i ( ( 𝐴 ∈ ( 𝑋𝑃 ) ∧ 𝐵 ∈ ( 𝑋𝑃 ) ) → ( 𝐴𝑋𝐵𝑋 ) )
8 1 2 3 rngocl ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 )
9 8 3expb ( ( 𝑅 ∈ RingOps ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 )
10 4 7 9 syl2an ( ( 𝑅 ∈ CRingOps ∧ ( 𝐴 ∈ ( 𝑋𝑃 ) ∧ 𝐵 ∈ ( 𝑋𝑃 ) ) ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 )
11 10 adantlr ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋𝑃 ) ∧ 𝐵 ∈ ( 𝑋𝑃 ) ) ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 )
12 eldifn ( 𝐵 ∈ ( 𝑋𝑃 ) → ¬ 𝐵𝑃 )
13 12 ad2antll ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋𝑃 ) ∧ 𝐵 ∈ ( 𝑋𝑃 ) ) ) → ¬ 𝐵𝑃 )
14 1 2 3 pridlc2 ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋𝑃 ) ∧ 𝐵𝑋 ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) ) → 𝐵𝑃 )
15 14 3exp2 ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) → ( 𝐴 ∈ ( 𝑋𝑃 ) → ( 𝐵𝑋 → ( ( 𝐴 𝐻 𝐵 ) ∈ 𝑃𝐵𝑃 ) ) ) )
16 15 imp32 ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋𝑃 ) ∧ 𝐵𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) ∈ 𝑃𝐵𝑃 ) )
17 16 con3d ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋𝑃 ) ∧ 𝐵𝑋 ) ) → ( ¬ 𝐵𝑃 → ¬ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) )
18 6 17 sylanr2 ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋𝑃 ) ∧ 𝐵 ∈ ( 𝑋𝑃 ) ) ) → ( ¬ 𝐵𝑃 → ¬ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) )
19 13 18 mpd ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋𝑃 ) ∧ 𝐵 ∈ ( 𝑋𝑃 ) ) ) → ¬ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 )
20 11 19 eldifd ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋𝑃 ) ∧ 𝐵 ∈ ( 𝑋𝑃 ) ) ) → ( 𝐴 𝐻 𝐵 ) ∈ ( 𝑋𝑃 ) )