Step |
Hyp |
Ref |
Expression |
1 |
|
ispridlc.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
ispridlc.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
3 |
|
ispridlc.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
|
crngorngo |
⊢ ( 𝑅 ∈ CRingOps → 𝑅 ∈ RingOps ) |
5 |
|
eldifi |
⊢ ( 𝐴 ∈ ( 𝑋 ∖ 𝑃 ) → 𝐴 ∈ 𝑋 ) |
6 |
|
eldifi |
⊢ ( 𝐵 ∈ ( 𝑋 ∖ 𝑃 ) → 𝐵 ∈ 𝑋 ) |
7 |
5 6
|
anim12i |
⊢ ( ( 𝐴 ∈ ( 𝑋 ∖ 𝑃 ) ∧ 𝐵 ∈ ( 𝑋 ∖ 𝑃 ) ) → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) |
8 |
1 2 3
|
rngocl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ) |
9 |
8
|
3expb |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ) |
10 |
4 7 9
|
syl2an |
⊢ ( ( 𝑅 ∈ CRingOps ∧ ( 𝐴 ∈ ( 𝑋 ∖ 𝑃 ) ∧ 𝐵 ∈ ( 𝑋 ∖ 𝑃 ) ) ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ) |
11 |
10
|
adantlr |
⊢ ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋 ∖ 𝑃 ) ∧ 𝐵 ∈ ( 𝑋 ∖ 𝑃 ) ) ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ) |
12 |
|
eldifn |
⊢ ( 𝐵 ∈ ( 𝑋 ∖ 𝑃 ) → ¬ 𝐵 ∈ 𝑃 ) |
13 |
12
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋 ∖ 𝑃 ) ∧ 𝐵 ∈ ( 𝑋 ∖ 𝑃 ) ) ) → ¬ 𝐵 ∈ 𝑃 ) |
14 |
1 2 3
|
pridlc2 |
⊢ ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋 ∖ 𝑃 ) ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) ) → 𝐵 ∈ 𝑃 ) |
15 |
14
|
3exp2 |
⊢ ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) → ( 𝐴 ∈ ( 𝑋 ∖ 𝑃 ) → ( 𝐵 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 → 𝐵 ∈ 𝑃 ) ) ) ) |
16 |
15
|
imp32 |
⊢ ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋 ∖ 𝑃 ) ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 → 𝐵 ∈ 𝑃 ) ) |
17 |
16
|
con3d |
⊢ ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋 ∖ 𝑃 ) ∧ 𝐵 ∈ 𝑋 ) ) → ( ¬ 𝐵 ∈ 𝑃 → ¬ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) ) |
18 |
6 17
|
sylanr2 |
⊢ ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋 ∖ 𝑃 ) ∧ 𝐵 ∈ ( 𝑋 ∖ 𝑃 ) ) ) → ( ¬ 𝐵 ∈ 𝑃 → ¬ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) ) |
19 |
13 18
|
mpd |
⊢ ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋 ∖ 𝑃 ) ∧ 𝐵 ∈ ( 𝑋 ∖ 𝑃 ) ) ) → ¬ ( 𝐴 𝐻 𝐵 ) ∈ 𝑃 ) |
20 |
11 19
|
eldifd |
⊢ ( ( ( 𝑅 ∈ CRingOps ∧ 𝑃 ∈ ( PrIdl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ ( 𝑋 ∖ 𝑃 ) ∧ 𝐵 ∈ ( 𝑋 ∖ 𝑃 ) ) ) → ( 𝐴 𝐻 𝐵 ) ∈ ( 𝑋 ∖ 𝑃 ) ) |