Metamath Proof Explorer


Theorem pridlc3

Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011)

Ref Expression
Hypotheses ispridlc.1
|- G = ( 1st ` R )
ispridlc.2
|- H = ( 2nd ` R )
ispridlc.3
|- X = ran G
Assertion pridlc3
|- ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> ( A H B ) e. ( X \ P ) )

Proof

Step Hyp Ref Expression
1 ispridlc.1
 |-  G = ( 1st ` R )
2 ispridlc.2
 |-  H = ( 2nd ` R )
3 ispridlc.3
 |-  X = ran G
4 crngorngo
 |-  ( R e. CRingOps -> R e. RingOps )
5 eldifi
 |-  ( A e. ( X \ P ) -> A e. X )
6 eldifi
 |-  ( B e. ( X \ P ) -> B e. X )
7 5 6 anim12i
 |-  ( ( A e. ( X \ P ) /\ B e. ( X \ P ) ) -> ( A e. X /\ B e. X ) )
8 1 2 3 rngocl
 |-  ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A H B ) e. X )
9 8 3expb
 |-  ( ( R e. RingOps /\ ( A e. X /\ B e. X ) ) -> ( A H B ) e. X )
10 4 7 9 syl2an
 |-  ( ( R e. CRingOps /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> ( A H B ) e. X )
11 10 adantlr
 |-  ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> ( A H B ) e. X )
12 eldifn
 |-  ( B e. ( X \ P ) -> -. B e. P )
13 12 ad2antll
 |-  ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> -. B e. P )
14 1 2 3 pridlc2
 |-  ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. X /\ ( A H B ) e. P ) ) -> B e. P )
15 14 3exp2
 |-  ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) -> ( A e. ( X \ P ) -> ( B e. X -> ( ( A H B ) e. P -> B e. P ) ) ) )
16 15 imp32
 |-  ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. X ) ) -> ( ( A H B ) e. P -> B e. P ) )
17 16 con3d
 |-  ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. X ) ) -> ( -. B e. P -> -. ( A H B ) e. P ) )
18 6 17 sylanr2
 |-  ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> ( -. B e. P -> -. ( A H B ) e. P ) )
19 13 18 mpd
 |-  ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> -. ( A H B ) e. P )
20 11 19 eldifd
 |-  ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> ( A H B ) e. ( X \ P ) )