Step |
Hyp |
Ref |
Expression |
1 |
|
ispridlc.1 |
|- G = ( 1st ` R ) |
2 |
|
ispridlc.2 |
|- H = ( 2nd ` R ) |
3 |
|
ispridlc.3 |
|- X = ran G |
4 |
|
crngorngo |
|- ( R e. CRingOps -> R e. RingOps ) |
5 |
|
eldifi |
|- ( A e. ( X \ P ) -> A e. X ) |
6 |
|
eldifi |
|- ( B e. ( X \ P ) -> B e. X ) |
7 |
5 6
|
anim12i |
|- ( ( A e. ( X \ P ) /\ B e. ( X \ P ) ) -> ( A e. X /\ B e. X ) ) |
8 |
1 2 3
|
rngocl |
|- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A H B ) e. X ) |
9 |
8
|
3expb |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X ) ) -> ( A H B ) e. X ) |
10 |
4 7 9
|
syl2an |
|- ( ( R e. CRingOps /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> ( A H B ) e. X ) |
11 |
10
|
adantlr |
|- ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> ( A H B ) e. X ) |
12 |
|
eldifn |
|- ( B e. ( X \ P ) -> -. B e. P ) |
13 |
12
|
ad2antll |
|- ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> -. B e. P ) |
14 |
1 2 3
|
pridlc2 |
|- ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. X /\ ( A H B ) e. P ) ) -> B e. P ) |
15 |
14
|
3exp2 |
|- ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) -> ( A e. ( X \ P ) -> ( B e. X -> ( ( A H B ) e. P -> B e. P ) ) ) ) |
16 |
15
|
imp32 |
|- ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. X ) ) -> ( ( A H B ) e. P -> B e. P ) ) |
17 |
16
|
con3d |
|- ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. X ) ) -> ( -. B e. P -> -. ( A H B ) e. P ) ) |
18 |
6 17
|
sylanr2 |
|- ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> ( -. B e. P -> -. ( A H B ) e. P ) ) |
19 |
13 18
|
mpd |
|- ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> -. ( A H B ) e. P ) |
20 |
11 19
|
eldifd |
|- ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> ( A H B ) e. ( X \ P ) ) |