| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ispridlc.1 |
|- G = ( 1st ` R ) |
| 2 |
|
ispridlc.2 |
|- H = ( 2nd ` R ) |
| 3 |
|
ispridlc.3 |
|- X = ran G |
| 4 |
|
crngorngo |
|- ( R e. CRingOps -> R e. RingOps ) |
| 5 |
|
eldifi |
|- ( A e. ( X \ P ) -> A e. X ) |
| 6 |
|
eldifi |
|- ( B e. ( X \ P ) -> B e. X ) |
| 7 |
5 6
|
anim12i |
|- ( ( A e. ( X \ P ) /\ B e. ( X \ P ) ) -> ( A e. X /\ B e. X ) ) |
| 8 |
1 2 3
|
rngocl |
|- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A H B ) e. X ) |
| 9 |
8
|
3expb |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X ) ) -> ( A H B ) e. X ) |
| 10 |
4 7 9
|
syl2an |
|- ( ( R e. CRingOps /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> ( A H B ) e. X ) |
| 11 |
10
|
adantlr |
|- ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> ( A H B ) e. X ) |
| 12 |
|
eldifn |
|- ( B e. ( X \ P ) -> -. B e. P ) |
| 13 |
12
|
ad2antll |
|- ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> -. B e. P ) |
| 14 |
1 2 3
|
pridlc2 |
|- ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. X /\ ( A H B ) e. P ) ) -> B e. P ) |
| 15 |
14
|
3exp2 |
|- ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) -> ( A e. ( X \ P ) -> ( B e. X -> ( ( A H B ) e. P -> B e. P ) ) ) ) |
| 16 |
15
|
imp32 |
|- ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. X ) ) -> ( ( A H B ) e. P -> B e. P ) ) |
| 17 |
16
|
con3d |
|- ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. X ) ) -> ( -. B e. P -> -. ( A H B ) e. P ) ) |
| 18 |
6 17
|
sylanr2 |
|- ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> ( -. B e. P -> -. ( A H B ) e. P ) ) |
| 19 |
13 18
|
mpd |
|- ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> -. ( A H B ) e. P ) |
| 20 |
11 19
|
eldifd |
|- ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> ( A H B ) e. ( X \ P ) ) |