| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ispridlc.1 |  |-  G = ( 1st ` R ) | 
						
							| 2 |  | ispridlc.2 |  |-  H = ( 2nd ` R ) | 
						
							| 3 |  | ispridlc.3 |  |-  X = ran G | 
						
							| 4 |  | crngorngo |  |-  ( R e. CRingOps -> R e. RingOps ) | 
						
							| 5 |  | eldifi |  |-  ( A e. ( X \ P ) -> A e. X ) | 
						
							| 6 |  | eldifi |  |-  ( B e. ( X \ P ) -> B e. X ) | 
						
							| 7 | 5 6 | anim12i |  |-  ( ( A e. ( X \ P ) /\ B e. ( X \ P ) ) -> ( A e. X /\ B e. X ) ) | 
						
							| 8 | 1 2 3 | rngocl |  |-  ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A H B ) e. X ) | 
						
							| 9 | 8 | 3expb |  |-  ( ( R e. RingOps /\ ( A e. X /\ B e. X ) ) -> ( A H B ) e. X ) | 
						
							| 10 | 4 7 9 | syl2an |  |-  ( ( R e. CRingOps /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> ( A H B ) e. X ) | 
						
							| 11 | 10 | adantlr |  |-  ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> ( A H B ) e. X ) | 
						
							| 12 |  | eldifn |  |-  ( B e. ( X \ P ) -> -. B e. P ) | 
						
							| 13 | 12 | ad2antll |  |-  ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> -. B e. P ) | 
						
							| 14 | 1 2 3 | pridlc2 |  |-  ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. X /\ ( A H B ) e. P ) ) -> B e. P ) | 
						
							| 15 | 14 | 3exp2 |  |-  ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) -> ( A e. ( X \ P ) -> ( B e. X -> ( ( A H B ) e. P -> B e. P ) ) ) ) | 
						
							| 16 | 15 | imp32 |  |-  ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. X ) ) -> ( ( A H B ) e. P -> B e. P ) ) | 
						
							| 17 | 16 | con3d |  |-  ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. X ) ) -> ( -. B e. P -> -. ( A H B ) e. P ) ) | 
						
							| 18 | 6 17 | sylanr2 |  |-  ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> ( -. B e. P -> -. ( A H B ) e. P ) ) | 
						
							| 19 | 13 18 | mpd |  |-  ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> -. ( A H B ) e. P ) | 
						
							| 20 | 11 19 | eldifd |  |-  ( ( ( R e. CRingOps /\ P e. ( PrIdl ` R ) ) /\ ( A e. ( X \ P ) /\ B e. ( X \ P ) ) ) -> ( A H B ) e. ( X \ P ) ) |