Metamath Proof Explorer


Theorem pridlc3

Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011)

Ref Expression
Hypotheses ispridlc.1 G = 1 st R
ispridlc.2 H = 2 nd R
ispridlc.3 X = ran G
Assertion pridlc3 R CRingOps P PrIdl R A X P B X P A H B X P

Proof

Step Hyp Ref Expression
1 ispridlc.1 G = 1 st R
2 ispridlc.2 H = 2 nd R
3 ispridlc.3 X = ran G
4 crngorngo R CRingOps R RingOps
5 eldifi A X P A X
6 eldifi B X P B X
7 5 6 anim12i A X P B X P A X B X
8 1 2 3 rngocl R RingOps A X B X A H B X
9 8 3expb R RingOps A X B X A H B X
10 4 7 9 syl2an R CRingOps A X P B X P A H B X
11 10 adantlr R CRingOps P PrIdl R A X P B X P A H B X
12 eldifn B X P ¬ B P
13 12 ad2antll R CRingOps P PrIdl R A X P B X P ¬ B P
14 1 2 3 pridlc2 R CRingOps P PrIdl R A X P B X A H B P B P
15 14 3exp2 R CRingOps P PrIdl R A X P B X A H B P B P
16 15 imp32 R CRingOps P PrIdl R A X P B X A H B P B P
17 16 con3d R CRingOps P PrIdl R A X P B X ¬ B P ¬ A H B P
18 6 17 sylanr2 R CRingOps P PrIdl R A X P B X P ¬ B P ¬ A H B P
19 13 18 mpd R CRingOps P PrIdl R A X P B X P ¬ A H B P
20 11 19 eldifd R CRingOps P PrIdl R A X P B X P A H B X P