Metamath Proof Explorer


Theorem isdmn3

Description: The predicate "is a domain", alternate expression. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses isdmn3.1 G=1stR
isdmn3.2 H=2ndR
isdmn3.3 X=ranG
isdmn3.4 Z=GIdG
isdmn3.5 U=GIdH
Assertion isdmn3 RDmnRCRingOpsUZaXbXaHb=Za=Zb=Z

Proof

Step Hyp Ref Expression
1 isdmn3.1 G=1stR
2 isdmn3.2 H=2ndR
3 isdmn3.3 X=ranG
4 isdmn3.4 Z=GIdG
5 isdmn3.5 U=GIdH
6 isdmn2 RDmnRPrRingRCRingOps
7 1 4 isprrngo RPrRingRRingOpsZPrIdlR
8 1 2 3 ispridlc RCRingOpsZPrIdlRZIdlRZXaXbXaHbZaZbZ
9 crngorngo RCRingOpsRRingOps
10 9 biantrurd RCRingOpsZPrIdlRRRingOpsZPrIdlR
11 3anass ZIdlRZXaXbXaHbZaZbZZIdlRZXaXbXaHbZaZbZ
12 1 4 0idl RRingOpsZIdlR
13 9 12 syl RCRingOpsZIdlR
14 13 biantrurd RCRingOpsZXaXbXaHbZaZbZZIdlRZXaXbXaHbZaZbZ
15 1 rneqi ranG=ran1stR
16 3 15 eqtri X=ran1stR
17 16 2 5 rngo1cl RRingOpsUX
18 eleq2 Z=XUZUX
19 elsni UZU=Z
20 18 19 syl6bir Z=XUXU=Z
21 17 20 syl5com RRingOpsZ=XU=Z
22 1 2 4 5 3 rngoueqz RRingOpsX1𝑜U=Z
23 1 3 4 rngo0cl RRingOpsZX
24 en1eqsn ZXX1𝑜X=Z
25 24 eqcomd ZXX1𝑜Z=X
26 25 ex ZXX1𝑜Z=X
27 23 26 syl RRingOpsX1𝑜Z=X
28 22 27 sylbird RRingOpsU=ZZ=X
29 21 28 impbid RRingOpsZ=XU=Z
30 9 29 syl RCRingOpsZ=XU=Z
31 30 necon3bid RCRingOpsZXUZ
32 ovex aHbV
33 32 elsn aHbZaHb=Z
34 velsn aZa=Z
35 velsn bZb=Z
36 34 35 orbi12i aZbZa=Zb=Z
37 33 36 imbi12i aHbZaZbZaHb=Za=Zb=Z
38 37 a1i RCRingOpsaHbZaZbZaHb=Za=Zb=Z
39 38 2ralbidv RCRingOpsaXbXaHbZaZbZaXbXaHb=Za=Zb=Z
40 31 39 anbi12d RCRingOpsZXaXbXaHbZaZbZUZaXbXaHb=Za=Zb=Z
41 14 40 bitr3d RCRingOpsZIdlRZXaXbXaHbZaZbZUZaXbXaHb=Za=Zb=Z
42 11 41 bitrid RCRingOpsZIdlRZXaXbXaHbZaZbZUZaXbXaHb=Za=Zb=Z
43 8 10 42 3bitr3d RCRingOpsRRingOpsZPrIdlRUZaXbXaHb=Za=Zb=Z
44 7 43 bitrid RCRingOpsRPrRingUZaXbXaHb=Za=Zb=Z
45 44 pm5.32i RCRingOpsRPrRingRCRingOpsUZaXbXaHb=Za=Zb=Z
46 ancom RPrRingRCRingOpsRCRingOpsRPrRing
47 3anass RCRingOpsUZaXbXaHb=Za=Zb=ZRCRingOpsUZaXbXaHb=Za=Zb=Z
48 45 46 47 3bitr4i RPrRingRCRingOpsRCRingOpsUZaXbXaHb=Za=Zb=Z
49 6 48 bitri RDmnRCRingOpsUZaXbXaHb=Za=Zb=Z