Metamath Proof Explorer


Theorem isdmn3

Description: The predicate "is a domain", alternate expression. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses isdmn3.1 G = 1 st R
isdmn3.2 H = 2 nd R
isdmn3.3 X = ran G
isdmn3.4 Z = GId G
isdmn3.5 U = GId H
Assertion isdmn3 R Dmn R CRingOps U Z a X b X a H b = Z a = Z b = Z

Proof

Step Hyp Ref Expression
1 isdmn3.1 G = 1 st R
2 isdmn3.2 H = 2 nd R
3 isdmn3.3 X = ran G
4 isdmn3.4 Z = GId G
5 isdmn3.5 U = GId H
6 isdmn2 R Dmn R PrRing R CRingOps
7 1 4 isprrngo R PrRing R RingOps Z PrIdl R
8 1 2 3 ispridlc R CRingOps Z PrIdl R Z Idl R Z X a X b X a H b Z a Z b Z
9 crngorngo R CRingOps R RingOps
10 9 biantrurd R CRingOps Z PrIdl R R RingOps Z PrIdl R
11 3anass Z Idl R Z X a X b X a H b Z a Z b Z Z Idl R Z X a X b X a H b Z a Z b Z
12 1 4 0idl R RingOps Z Idl R
13 9 12 syl R CRingOps Z Idl R
14 13 biantrurd R CRingOps Z X a X b X a H b Z a Z b Z Z Idl R Z X a X b X a H b Z a Z b Z
15 1 rneqi ran G = ran 1 st R
16 3 15 eqtri X = ran 1 st R
17 16 2 5 rngo1cl R RingOps U X
18 eleq2 Z = X U Z U X
19 elsni U Z U = Z
20 18 19 syl6bir Z = X U X U = Z
21 17 20 syl5com R RingOps Z = X U = Z
22 1 2 4 5 3 rngoueqz R RingOps X 1 𝑜 U = Z
23 1 3 4 rngo0cl R RingOps Z X
24 en1eqsn Z X X 1 𝑜 X = Z
25 24 eqcomd Z X X 1 𝑜 Z = X
26 25 ex Z X X 1 𝑜 Z = X
27 23 26 syl R RingOps X 1 𝑜 Z = X
28 22 27 sylbird R RingOps U = Z Z = X
29 21 28 impbid R RingOps Z = X U = Z
30 9 29 syl R CRingOps Z = X U = Z
31 30 necon3bid R CRingOps Z X U Z
32 ovex a H b V
33 32 elsn a H b Z a H b = Z
34 velsn a Z a = Z
35 velsn b Z b = Z
36 34 35 orbi12i a Z b Z a = Z b = Z
37 33 36 imbi12i a H b Z a Z b Z a H b = Z a = Z b = Z
38 37 a1i R CRingOps a H b Z a Z b Z a H b = Z a = Z b = Z
39 38 2ralbidv R CRingOps a X b X a H b Z a Z b Z a X b X a H b = Z a = Z b = Z
40 31 39 anbi12d R CRingOps Z X a X b X a H b Z a Z b Z U Z a X b X a H b = Z a = Z b = Z
41 14 40 bitr3d R CRingOps Z Idl R Z X a X b X a H b Z a Z b Z U Z a X b X a H b = Z a = Z b = Z
42 11 41 syl5bb R CRingOps Z Idl R Z X a X b X a H b Z a Z b Z U Z a X b X a H b = Z a = Z b = Z
43 8 10 42 3bitr3d R CRingOps R RingOps Z PrIdl R U Z a X b X a H b = Z a = Z b = Z
44 7 43 syl5bb R CRingOps R PrRing U Z a X b X a H b = Z a = Z b = Z
45 44 pm5.32i R CRingOps R PrRing R CRingOps U Z a X b X a H b = Z a = Z b = Z
46 ancom R PrRing R CRingOps R CRingOps R PrRing
47 3anass R CRingOps U Z a X b X a H b = Z a = Z b = Z R CRingOps U Z a X b X a H b = Z a = Z b = Z
48 45 46 47 3bitr4i R PrRing R CRingOps R CRingOps U Z a X b X a H b = Z a = Z b = Z
49 6 48 bitri R Dmn R CRingOps U Z a X b X a H b = Z a = Z b = Z