| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isdmn3.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
| 2 |
|
isdmn3.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
| 3 |
|
isdmn3.3 |
⊢ 𝑋 = ran 𝐺 |
| 4 |
|
isdmn3.4 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
| 5 |
|
isdmn3.5 |
⊢ 𝑈 = ( GId ‘ 𝐻 ) |
| 6 |
|
isdmn2 |
⊢ ( 𝑅 ∈ Dmn ↔ ( 𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps ) ) |
| 7 |
1 4
|
isprrngo |
⊢ ( 𝑅 ∈ PrRing ↔ ( 𝑅 ∈ RingOps ∧ { 𝑍 } ∈ ( PrIdl ‘ 𝑅 ) ) ) |
| 8 |
1 2 3
|
ispridlc |
⊢ ( 𝑅 ∈ CRingOps → ( { 𝑍 } ∈ ( PrIdl ‘ 𝑅 ) ↔ ( { 𝑍 } ∈ ( Idl ‘ 𝑅 ) ∧ { 𝑍 } ≠ 𝑋 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) ∈ { 𝑍 } → ( 𝑎 ∈ { 𝑍 } ∨ 𝑏 ∈ { 𝑍 } ) ) ) ) ) |
| 9 |
|
crngorngo |
⊢ ( 𝑅 ∈ CRingOps → 𝑅 ∈ RingOps ) |
| 10 |
9
|
biantrurd |
⊢ ( 𝑅 ∈ CRingOps → ( { 𝑍 } ∈ ( PrIdl ‘ 𝑅 ) ↔ ( 𝑅 ∈ RingOps ∧ { 𝑍 } ∈ ( PrIdl ‘ 𝑅 ) ) ) ) |
| 11 |
|
3anass |
⊢ ( ( { 𝑍 } ∈ ( Idl ‘ 𝑅 ) ∧ { 𝑍 } ≠ 𝑋 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) ∈ { 𝑍 } → ( 𝑎 ∈ { 𝑍 } ∨ 𝑏 ∈ { 𝑍 } ) ) ) ↔ ( { 𝑍 } ∈ ( Idl ‘ 𝑅 ) ∧ ( { 𝑍 } ≠ 𝑋 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) ∈ { 𝑍 } → ( 𝑎 ∈ { 𝑍 } ∨ 𝑏 ∈ { 𝑍 } ) ) ) ) ) |
| 12 |
1 4
|
0idl |
⊢ ( 𝑅 ∈ RingOps → { 𝑍 } ∈ ( Idl ‘ 𝑅 ) ) |
| 13 |
9 12
|
syl |
⊢ ( 𝑅 ∈ CRingOps → { 𝑍 } ∈ ( Idl ‘ 𝑅 ) ) |
| 14 |
13
|
biantrurd |
⊢ ( 𝑅 ∈ CRingOps → ( ( { 𝑍 } ≠ 𝑋 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) ∈ { 𝑍 } → ( 𝑎 ∈ { 𝑍 } ∨ 𝑏 ∈ { 𝑍 } ) ) ) ↔ ( { 𝑍 } ∈ ( Idl ‘ 𝑅 ) ∧ ( { 𝑍 } ≠ 𝑋 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) ∈ { 𝑍 } → ( 𝑎 ∈ { 𝑍 } ∨ 𝑏 ∈ { 𝑍 } ) ) ) ) ) ) |
| 15 |
1
|
rneqi |
⊢ ran 𝐺 = ran ( 1st ‘ 𝑅 ) |
| 16 |
3 15
|
eqtri |
⊢ 𝑋 = ran ( 1st ‘ 𝑅 ) |
| 17 |
16 2 5
|
rngo1cl |
⊢ ( 𝑅 ∈ RingOps → 𝑈 ∈ 𝑋 ) |
| 18 |
|
eleq2 |
⊢ ( { 𝑍 } = 𝑋 → ( 𝑈 ∈ { 𝑍 } ↔ 𝑈 ∈ 𝑋 ) ) |
| 19 |
|
elsni |
⊢ ( 𝑈 ∈ { 𝑍 } → 𝑈 = 𝑍 ) |
| 20 |
18 19
|
biimtrrdi |
⊢ ( { 𝑍 } = 𝑋 → ( 𝑈 ∈ 𝑋 → 𝑈 = 𝑍 ) ) |
| 21 |
17 20
|
syl5com |
⊢ ( 𝑅 ∈ RingOps → ( { 𝑍 } = 𝑋 → 𝑈 = 𝑍 ) ) |
| 22 |
1 2 4 5 3
|
rngoueqz |
⊢ ( 𝑅 ∈ RingOps → ( 𝑋 ≈ 1o ↔ 𝑈 = 𝑍 ) ) |
| 23 |
1 3 4
|
rngo0cl |
⊢ ( 𝑅 ∈ RingOps → 𝑍 ∈ 𝑋 ) |
| 24 |
|
en1eqsn |
⊢ ( ( 𝑍 ∈ 𝑋 ∧ 𝑋 ≈ 1o ) → 𝑋 = { 𝑍 } ) |
| 25 |
24
|
eqcomd |
⊢ ( ( 𝑍 ∈ 𝑋 ∧ 𝑋 ≈ 1o ) → { 𝑍 } = 𝑋 ) |
| 26 |
25
|
ex |
⊢ ( 𝑍 ∈ 𝑋 → ( 𝑋 ≈ 1o → { 𝑍 } = 𝑋 ) ) |
| 27 |
23 26
|
syl |
⊢ ( 𝑅 ∈ RingOps → ( 𝑋 ≈ 1o → { 𝑍 } = 𝑋 ) ) |
| 28 |
22 27
|
sylbird |
⊢ ( 𝑅 ∈ RingOps → ( 𝑈 = 𝑍 → { 𝑍 } = 𝑋 ) ) |
| 29 |
21 28
|
impbid |
⊢ ( 𝑅 ∈ RingOps → ( { 𝑍 } = 𝑋 ↔ 𝑈 = 𝑍 ) ) |
| 30 |
9 29
|
syl |
⊢ ( 𝑅 ∈ CRingOps → ( { 𝑍 } = 𝑋 ↔ 𝑈 = 𝑍 ) ) |
| 31 |
30
|
necon3bid |
⊢ ( 𝑅 ∈ CRingOps → ( { 𝑍 } ≠ 𝑋 ↔ 𝑈 ≠ 𝑍 ) ) |
| 32 |
|
ovex |
⊢ ( 𝑎 𝐻 𝑏 ) ∈ V |
| 33 |
32
|
elsn |
⊢ ( ( 𝑎 𝐻 𝑏 ) ∈ { 𝑍 } ↔ ( 𝑎 𝐻 𝑏 ) = 𝑍 ) |
| 34 |
|
velsn |
⊢ ( 𝑎 ∈ { 𝑍 } ↔ 𝑎 = 𝑍 ) |
| 35 |
|
velsn |
⊢ ( 𝑏 ∈ { 𝑍 } ↔ 𝑏 = 𝑍 ) |
| 36 |
34 35
|
orbi12i |
⊢ ( ( 𝑎 ∈ { 𝑍 } ∨ 𝑏 ∈ { 𝑍 } ) ↔ ( 𝑎 = 𝑍 ∨ 𝑏 = 𝑍 ) ) |
| 37 |
33 36
|
imbi12i |
⊢ ( ( ( 𝑎 𝐻 𝑏 ) ∈ { 𝑍 } → ( 𝑎 ∈ { 𝑍 } ∨ 𝑏 ∈ { 𝑍 } ) ) ↔ ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍 ∨ 𝑏 = 𝑍 ) ) ) |
| 38 |
37
|
a1i |
⊢ ( 𝑅 ∈ CRingOps → ( ( ( 𝑎 𝐻 𝑏 ) ∈ { 𝑍 } → ( 𝑎 ∈ { 𝑍 } ∨ 𝑏 ∈ { 𝑍 } ) ) ↔ ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍 ∨ 𝑏 = 𝑍 ) ) ) ) |
| 39 |
38
|
2ralbidv |
⊢ ( 𝑅 ∈ CRingOps → ( ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) ∈ { 𝑍 } → ( 𝑎 ∈ { 𝑍 } ∨ 𝑏 ∈ { 𝑍 } ) ) ↔ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍 ∨ 𝑏 = 𝑍 ) ) ) ) |
| 40 |
31 39
|
anbi12d |
⊢ ( 𝑅 ∈ CRingOps → ( ( { 𝑍 } ≠ 𝑋 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) ∈ { 𝑍 } → ( 𝑎 ∈ { 𝑍 } ∨ 𝑏 ∈ { 𝑍 } ) ) ) ↔ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍 ∨ 𝑏 = 𝑍 ) ) ) ) ) |
| 41 |
14 40
|
bitr3d |
⊢ ( 𝑅 ∈ CRingOps → ( ( { 𝑍 } ∈ ( Idl ‘ 𝑅 ) ∧ ( { 𝑍 } ≠ 𝑋 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) ∈ { 𝑍 } → ( 𝑎 ∈ { 𝑍 } ∨ 𝑏 ∈ { 𝑍 } ) ) ) ) ↔ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍 ∨ 𝑏 = 𝑍 ) ) ) ) ) |
| 42 |
11 41
|
bitrid |
⊢ ( 𝑅 ∈ CRingOps → ( ( { 𝑍 } ∈ ( Idl ‘ 𝑅 ) ∧ { 𝑍 } ≠ 𝑋 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) ∈ { 𝑍 } → ( 𝑎 ∈ { 𝑍 } ∨ 𝑏 ∈ { 𝑍 } ) ) ) ↔ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍 ∨ 𝑏 = 𝑍 ) ) ) ) ) |
| 43 |
8 10 42
|
3bitr3d |
⊢ ( 𝑅 ∈ CRingOps → ( ( 𝑅 ∈ RingOps ∧ { 𝑍 } ∈ ( PrIdl ‘ 𝑅 ) ) ↔ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍 ∨ 𝑏 = 𝑍 ) ) ) ) ) |
| 44 |
7 43
|
bitrid |
⊢ ( 𝑅 ∈ CRingOps → ( 𝑅 ∈ PrRing ↔ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍 ∨ 𝑏 = 𝑍 ) ) ) ) ) |
| 45 |
44
|
pm5.32i |
⊢ ( ( 𝑅 ∈ CRingOps ∧ 𝑅 ∈ PrRing ) ↔ ( 𝑅 ∈ CRingOps ∧ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍 ∨ 𝑏 = 𝑍 ) ) ) ) ) |
| 46 |
|
ancom |
⊢ ( ( 𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps ) ↔ ( 𝑅 ∈ CRingOps ∧ 𝑅 ∈ PrRing ) ) |
| 47 |
|
3anass |
⊢ ( ( 𝑅 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍 ∨ 𝑏 = 𝑍 ) ) ) ↔ ( 𝑅 ∈ CRingOps ∧ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍 ∨ 𝑏 = 𝑍 ) ) ) ) ) |
| 48 |
45 46 47
|
3bitr4i |
⊢ ( ( 𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps ) ↔ ( 𝑅 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍 ∨ 𝑏 = 𝑍 ) ) ) ) |
| 49 |
6 48
|
bitri |
⊢ ( 𝑅 ∈ Dmn ↔ ( 𝑅 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍 ∨ 𝑏 = 𝑍 ) ) ) ) |