| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0idl.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
| 2 |
|
0idl.2 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
| 3 |
|
eqid |
⊢ ran 𝐺 = ran 𝐺 |
| 4 |
1 3 2
|
rngo0cl |
⊢ ( 𝑅 ∈ RingOps → 𝑍 ∈ ran 𝐺 ) |
| 5 |
4
|
snssd |
⊢ ( 𝑅 ∈ RingOps → { 𝑍 } ⊆ ran 𝐺 ) |
| 6 |
2
|
fvexi |
⊢ 𝑍 ∈ V |
| 7 |
6
|
snid |
⊢ 𝑍 ∈ { 𝑍 } |
| 8 |
7
|
a1i |
⊢ ( 𝑅 ∈ RingOps → 𝑍 ∈ { 𝑍 } ) |
| 9 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝑍 } ↔ 𝑥 = 𝑍 ) |
| 10 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑍 } ↔ 𝑦 = 𝑍 ) |
| 11 |
1 3 2
|
rngo0rid |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑍 ∈ ran 𝐺 ) → ( 𝑍 𝐺 𝑍 ) = 𝑍 ) |
| 12 |
4 11
|
mpdan |
⊢ ( 𝑅 ∈ RingOps → ( 𝑍 𝐺 𝑍 ) = 𝑍 ) |
| 13 |
|
ovex |
⊢ ( 𝑍 𝐺 𝑍 ) ∈ V |
| 14 |
13
|
elsn |
⊢ ( ( 𝑍 𝐺 𝑍 ) ∈ { 𝑍 } ↔ ( 𝑍 𝐺 𝑍 ) = 𝑍 ) |
| 15 |
12 14
|
sylibr |
⊢ ( 𝑅 ∈ RingOps → ( 𝑍 𝐺 𝑍 ) ∈ { 𝑍 } ) |
| 16 |
|
oveq2 |
⊢ ( 𝑦 = 𝑍 → ( 𝑍 𝐺 𝑦 ) = ( 𝑍 𝐺 𝑍 ) ) |
| 17 |
16
|
eleq1d |
⊢ ( 𝑦 = 𝑍 → ( ( 𝑍 𝐺 𝑦 ) ∈ { 𝑍 } ↔ ( 𝑍 𝐺 𝑍 ) ∈ { 𝑍 } ) ) |
| 18 |
15 17
|
syl5ibrcom |
⊢ ( 𝑅 ∈ RingOps → ( 𝑦 = 𝑍 → ( 𝑍 𝐺 𝑦 ) ∈ { 𝑍 } ) ) |
| 19 |
10 18
|
biimtrid |
⊢ ( 𝑅 ∈ RingOps → ( 𝑦 ∈ { 𝑍 } → ( 𝑍 𝐺 𝑦 ) ∈ { 𝑍 } ) ) |
| 20 |
19
|
ralrimiv |
⊢ ( 𝑅 ∈ RingOps → ∀ 𝑦 ∈ { 𝑍 } ( 𝑍 𝐺 𝑦 ) ∈ { 𝑍 } ) |
| 21 |
|
eqid |
⊢ ( 2nd ‘ 𝑅 ) = ( 2nd ‘ 𝑅 ) |
| 22 |
2 3 1 21
|
rngorz |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑍 ) = 𝑍 ) |
| 23 |
|
ovex |
⊢ ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑍 ) ∈ V |
| 24 |
23
|
elsn |
⊢ ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑍 ) ∈ { 𝑍 } ↔ ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑍 ) = 𝑍 ) |
| 25 |
22 24
|
sylibr |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑍 ) ∈ { 𝑍 } ) |
| 26 |
2 3 1 21
|
rngolz |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑍 ( 2nd ‘ 𝑅 ) 𝑧 ) = 𝑍 ) |
| 27 |
|
ovex |
⊢ ( 𝑍 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ V |
| 28 |
27
|
elsn |
⊢ ( ( 𝑍 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ { 𝑍 } ↔ ( 𝑍 ( 2nd ‘ 𝑅 ) 𝑧 ) = 𝑍 ) |
| 29 |
26 28
|
sylibr |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑍 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ { 𝑍 } ) |
| 30 |
25 29
|
jca |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑍 ) ∈ { 𝑍 } ∧ ( 𝑍 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) |
| 31 |
30
|
ralrimiva |
⊢ ( 𝑅 ∈ RingOps → ∀ 𝑧 ∈ ran 𝐺 ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑍 ) ∈ { 𝑍 } ∧ ( 𝑍 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) |
| 32 |
20 31
|
jca |
⊢ ( 𝑅 ∈ RingOps → ( ∀ 𝑦 ∈ { 𝑍 } ( 𝑍 𝐺 𝑦 ) ∈ { 𝑍 } ∧ ∀ 𝑧 ∈ ran 𝐺 ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑍 ) ∈ { 𝑍 } ∧ ( 𝑍 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) ) |
| 33 |
|
oveq1 |
⊢ ( 𝑥 = 𝑍 → ( 𝑥 𝐺 𝑦 ) = ( 𝑍 𝐺 𝑦 ) ) |
| 34 |
33
|
eleq1d |
⊢ ( 𝑥 = 𝑍 → ( ( 𝑥 𝐺 𝑦 ) ∈ { 𝑍 } ↔ ( 𝑍 𝐺 𝑦 ) ∈ { 𝑍 } ) ) |
| 35 |
34
|
ralbidv |
⊢ ( 𝑥 = 𝑍 → ( ∀ 𝑦 ∈ { 𝑍 } ( 𝑥 𝐺 𝑦 ) ∈ { 𝑍 } ↔ ∀ 𝑦 ∈ { 𝑍 } ( 𝑍 𝐺 𝑦 ) ∈ { 𝑍 } ) ) |
| 36 |
|
oveq2 |
⊢ ( 𝑥 = 𝑍 → ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) = ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑍 ) ) |
| 37 |
36
|
eleq1d |
⊢ ( 𝑥 = 𝑍 → ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ { 𝑍 } ↔ ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑍 ) ∈ { 𝑍 } ) ) |
| 38 |
|
oveq1 |
⊢ ( 𝑥 = 𝑍 → ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) = ( 𝑍 ( 2nd ‘ 𝑅 ) 𝑧 ) ) |
| 39 |
38
|
eleq1d |
⊢ ( 𝑥 = 𝑍 → ( ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ { 𝑍 } ↔ ( 𝑍 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) |
| 40 |
37 39
|
anbi12d |
⊢ ( 𝑥 = 𝑍 → ( ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ { 𝑍 } ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ↔ ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑍 ) ∈ { 𝑍 } ∧ ( 𝑍 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) ) |
| 41 |
40
|
ralbidv |
⊢ ( 𝑥 = 𝑍 → ( ∀ 𝑧 ∈ ran 𝐺 ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ { 𝑍 } ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ↔ ∀ 𝑧 ∈ ran 𝐺 ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑍 ) ∈ { 𝑍 } ∧ ( 𝑍 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) ) |
| 42 |
35 41
|
anbi12d |
⊢ ( 𝑥 = 𝑍 → ( ( ∀ 𝑦 ∈ { 𝑍 } ( 𝑥 𝐺 𝑦 ) ∈ { 𝑍 } ∧ ∀ 𝑧 ∈ ran 𝐺 ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ { 𝑍 } ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) ↔ ( ∀ 𝑦 ∈ { 𝑍 } ( 𝑍 𝐺 𝑦 ) ∈ { 𝑍 } ∧ ∀ 𝑧 ∈ ran 𝐺 ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑍 ) ∈ { 𝑍 } ∧ ( 𝑍 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) ) ) |
| 43 |
32 42
|
syl5ibrcom |
⊢ ( 𝑅 ∈ RingOps → ( 𝑥 = 𝑍 → ( ∀ 𝑦 ∈ { 𝑍 } ( 𝑥 𝐺 𝑦 ) ∈ { 𝑍 } ∧ ∀ 𝑧 ∈ ran 𝐺 ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ { 𝑍 } ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) ) ) |
| 44 |
9 43
|
biimtrid |
⊢ ( 𝑅 ∈ RingOps → ( 𝑥 ∈ { 𝑍 } → ( ∀ 𝑦 ∈ { 𝑍 } ( 𝑥 𝐺 𝑦 ) ∈ { 𝑍 } ∧ ∀ 𝑧 ∈ ran 𝐺 ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ { 𝑍 } ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) ) ) |
| 45 |
44
|
ralrimiv |
⊢ ( 𝑅 ∈ RingOps → ∀ 𝑥 ∈ { 𝑍 } ( ∀ 𝑦 ∈ { 𝑍 } ( 𝑥 𝐺 𝑦 ) ∈ { 𝑍 } ∧ ∀ 𝑧 ∈ ran 𝐺 ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ { 𝑍 } ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) ) |
| 46 |
1 21 3 2
|
isidl |
⊢ ( 𝑅 ∈ RingOps → ( { 𝑍 } ∈ ( Idl ‘ 𝑅 ) ↔ ( { 𝑍 } ⊆ ran 𝐺 ∧ 𝑍 ∈ { 𝑍 } ∧ ∀ 𝑥 ∈ { 𝑍 } ( ∀ 𝑦 ∈ { 𝑍 } ( 𝑥 𝐺 𝑦 ) ∈ { 𝑍 } ∧ ∀ 𝑧 ∈ ran 𝐺 ( ( 𝑧 ( 2nd ‘ 𝑅 ) 𝑥 ) ∈ { 𝑍 } ∧ ( 𝑥 ( 2nd ‘ 𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) ) ) ) |
| 47 |
5 8 45 46
|
mpbir3and |
⊢ ( 𝑅 ∈ RingOps → { 𝑍 } ∈ ( Idl ‘ 𝑅 ) ) |