Metamath Proof Explorer


Theorem 0idl

Description: The set containing only 0 is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses 0idl.1 𝐺 = ( 1st𝑅 )
0idl.2 𝑍 = ( GId ‘ 𝐺 )
Assertion 0idl ( 𝑅 ∈ RingOps → { 𝑍 } ∈ ( Idl ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 0idl.1 𝐺 = ( 1st𝑅 )
2 0idl.2 𝑍 = ( GId ‘ 𝐺 )
3 eqid ran 𝐺 = ran 𝐺
4 1 3 2 rngo0cl ( 𝑅 ∈ RingOps → 𝑍 ∈ ran 𝐺 )
5 4 snssd ( 𝑅 ∈ RingOps → { 𝑍 } ⊆ ran 𝐺 )
6 2 fvexi 𝑍 ∈ V
7 6 snid 𝑍 ∈ { 𝑍 }
8 7 a1i ( 𝑅 ∈ RingOps → 𝑍 ∈ { 𝑍 } )
9 velsn ( 𝑥 ∈ { 𝑍 } ↔ 𝑥 = 𝑍 )
10 velsn ( 𝑦 ∈ { 𝑍 } ↔ 𝑦 = 𝑍 )
11 1 3 2 rngo0rid ( ( 𝑅 ∈ RingOps ∧ 𝑍 ∈ ran 𝐺 ) → ( 𝑍 𝐺 𝑍 ) = 𝑍 )
12 4 11 mpdan ( 𝑅 ∈ RingOps → ( 𝑍 𝐺 𝑍 ) = 𝑍 )
13 ovex ( 𝑍 𝐺 𝑍 ) ∈ V
14 13 elsn ( ( 𝑍 𝐺 𝑍 ) ∈ { 𝑍 } ↔ ( 𝑍 𝐺 𝑍 ) = 𝑍 )
15 12 14 sylibr ( 𝑅 ∈ RingOps → ( 𝑍 𝐺 𝑍 ) ∈ { 𝑍 } )
16 oveq2 ( 𝑦 = 𝑍 → ( 𝑍 𝐺 𝑦 ) = ( 𝑍 𝐺 𝑍 ) )
17 16 eleq1d ( 𝑦 = 𝑍 → ( ( 𝑍 𝐺 𝑦 ) ∈ { 𝑍 } ↔ ( 𝑍 𝐺 𝑍 ) ∈ { 𝑍 } ) )
18 15 17 syl5ibrcom ( 𝑅 ∈ RingOps → ( 𝑦 = 𝑍 → ( 𝑍 𝐺 𝑦 ) ∈ { 𝑍 } ) )
19 10 18 syl5bi ( 𝑅 ∈ RingOps → ( 𝑦 ∈ { 𝑍 } → ( 𝑍 𝐺 𝑦 ) ∈ { 𝑍 } ) )
20 19 ralrimiv ( 𝑅 ∈ RingOps → ∀ 𝑦 ∈ { 𝑍 } ( 𝑍 𝐺 𝑦 ) ∈ { 𝑍 } )
21 eqid ( 2nd𝑅 ) = ( 2nd𝑅 )
22 2 3 1 21 rngorz ( ( 𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑧 ( 2nd𝑅 ) 𝑍 ) = 𝑍 )
23 ovex ( 𝑧 ( 2nd𝑅 ) 𝑍 ) ∈ V
24 23 elsn ( ( 𝑧 ( 2nd𝑅 ) 𝑍 ) ∈ { 𝑍 } ↔ ( 𝑧 ( 2nd𝑅 ) 𝑍 ) = 𝑍 )
25 22 24 sylibr ( ( 𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑧 ( 2nd𝑅 ) 𝑍 ) ∈ { 𝑍 } )
26 2 3 1 21 rngolz ( ( 𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑍 ( 2nd𝑅 ) 𝑧 ) = 𝑍 )
27 ovex ( 𝑍 ( 2nd𝑅 ) 𝑧 ) ∈ V
28 27 elsn ( ( 𝑍 ( 2nd𝑅 ) 𝑧 ) ∈ { 𝑍 } ↔ ( 𝑍 ( 2nd𝑅 ) 𝑧 ) = 𝑍 )
29 26 28 sylibr ( ( 𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺 ) → ( 𝑍 ( 2nd𝑅 ) 𝑧 ) ∈ { 𝑍 } )
30 25 29 jca ( ( 𝑅 ∈ RingOps ∧ 𝑧 ∈ ran 𝐺 ) → ( ( 𝑧 ( 2nd𝑅 ) 𝑍 ) ∈ { 𝑍 } ∧ ( 𝑍 ( 2nd𝑅 ) 𝑧 ) ∈ { 𝑍 } ) )
31 30 ralrimiva ( 𝑅 ∈ RingOps → ∀ 𝑧 ∈ ran 𝐺 ( ( 𝑧 ( 2nd𝑅 ) 𝑍 ) ∈ { 𝑍 } ∧ ( 𝑍 ( 2nd𝑅 ) 𝑧 ) ∈ { 𝑍 } ) )
32 20 31 jca ( 𝑅 ∈ RingOps → ( ∀ 𝑦 ∈ { 𝑍 } ( 𝑍 𝐺 𝑦 ) ∈ { 𝑍 } ∧ ∀ 𝑧 ∈ ran 𝐺 ( ( 𝑧 ( 2nd𝑅 ) 𝑍 ) ∈ { 𝑍 } ∧ ( 𝑍 ( 2nd𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) )
33 oveq1 ( 𝑥 = 𝑍 → ( 𝑥 𝐺 𝑦 ) = ( 𝑍 𝐺 𝑦 ) )
34 33 eleq1d ( 𝑥 = 𝑍 → ( ( 𝑥 𝐺 𝑦 ) ∈ { 𝑍 } ↔ ( 𝑍 𝐺 𝑦 ) ∈ { 𝑍 } ) )
35 34 ralbidv ( 𝑥 = 𝑍 → ( ∀ 𝑦 ∈ { 𝑍 } ( 𝑥 𝐺 𝑦 ) ∈ { 𝑍 } ↔ ∀ 𝑦 ∈ { 𝑍 } ( 𝑍 𝐺 𝑦 ) ∈ { 𝑍 } ) )
36 oveq2 ( 𝑥 = 𝑍 → ( 𝑧 ( 2nd𝑅 ) 𝑥 ) = ( 𝑧 ( 2nd𝑅 ) 𝑍 ) )
37 36 eleq1d ( 𝑥 = 𝑍 → ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ { 𝑍 } ↔ ( 𝑧 ( 2nd𝑅 ) 𝑍 ) ∈ { 𝑍 } ) )
38 oveq1 ( 𝑥 = 𝑍 → ( 𝑥 ( 2nd𝑅 ) 𝑧 ) = ( 𝑍 ( 2nd𝑅 ) 𝑧 ) )
39 38 eleq1d ( 𝑥 = 𝑍 → ( ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ { 𝑍 } ↔ ( 𝑍 ( 2nd𝑅 ) 𝑧 ) ∈ { 𝑍 } ) )
40 37 39 anbi12d ( 𝑥 = 𝑍 → ( ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ { 𝑍 } ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ↔ ( ( 𝑧 ( 2nd𝑅 ) 𝑍 ) ∈ { 𝑍 } ∧ ( 𝑍 ( 2nd𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) )
41 40 ralbidv ( 𝑥 = 𝑍 → ( ∀ 𝑧 ∈ ran 𝐺 ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ { 𝑍 } ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ↔ ∀ 𝑧 ∈ ran 𝐺 ( ( 𝑧 ( 2nd𝑅 ) 𝑍 ) ∈ { 𝑍 } ∧ ( 𝑍 ( 2nd𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) )
42 35 41 anbi12d ( 𝑥 = 𝑍 → ( ( ∀ 𝑦 ∈ { 𝑍 } ( 𝑥 𝐺 𝑦 ) ∈ { 𝑍 } ∧ ∀ 𝑧 ∈ ran 𝐺 ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ { 𝑍 } ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) ↔ ( ∀ 𝑦 ∈ { 𝑍 } ( 𝑍 𝐺 𝑦 ) ∈ { 𝑍 } ∧ ∀ 𝑧 ∈ ran 𝐺 ( ( 𝑧 ( 2nd𝑅 ) 𝑍 ) ∈ { 𝑍 } ∧ ( 𝑍 ( 2nd𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) ) )
43 32 42 syl5ibrcom ( 𝑅 ∈ RingOps → ( 𝑥 = 𝑍 → ( ∀ 𝑦 ∈ { 𝑍 } ( 𝑥 𝐺 𝑦 ) ∈ { 𝑍 } ∧ ∀ 𝑧 ∈ ran 𝐺 ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ { 𝑍 } ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) ) )
44 9 43 syl5bi ( 𝑅 ∈ RingOps → ( 𝑥 ∈ { 𝑍 } → ( ∀ 𝑦 ∈ { 𝑍 } ( 𝑥 𝐺 𝑦 ) ∈ { 𝑍 } ∧ ∀ 𝑧 ∈ ran 𝐺 ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ { 𝑍 } ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) ) )
45 44 ralrimiv ( 𝑅 ∈ RingOps → ∀ 𝑥 ∈ { 𝑍 } ( ∀ 𝑦 ∈ { 𝑍 } ( 𝑥 𝐺 𝑦 ) ∈ { 𝑍 } ∧ ∀ 𝑧 ∈ ran 𝐺 ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ { 𝑍 } ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) )
46 1 21 3 2 isidl ( 𝑅 ∈ RingOps → ( { 𝑍 } ∈ ( Idl ‘ 𝑅 ) ↔ ( { 𝑍 } ⊆ ran 𝐺𝑍 ∈ { 𝑍 } ∧ ∀ 𝑥 ∈ { 𝑍 } ( ∀ 𝑦 ∈ { 𝑍 } ( 𝑥 𝐺 𝑦 ) ∈ { 𝑍 } ∧ ∀ 𝑧 ∈ ran 𝐺 ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ { 𝑍 } ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ { 𝑍 } ) ) ) ) )
47 5 8 45 46 mpbir3and ( 𝑅 ∈ RingOps → { 𝑍 } ∈ ( Idl ‘ 𝑅 ) )