| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0idl.1 |
|- G = ( 1st ` R ) |
| 2 |
|
0idl.2 |
|- Z = ( GId ` G ) |
| 3 |
|
eqid |
|- ran G = ran G |
| 4 |
1 3 2
|
rngo0cl |
|- ( R e. RingOps -> Z e. ran G ) |
| 5 |
4
|
snssd |
|- ( R e. RingOps -> { Z } C_ ran G ) |
| 6 |
2
|
fvexi |
|- Z e. _V |
| 7 |
6
|
snid |
|- Z e. { Z } |
| 8 |
7
|
a1i |
|- ( R e. RingOps -> Z e. { Z } ) |
| 9 |
|
velsn |
|- ( x e. { Z } <-> x = Z ) |
| 10 |
|
velsn |
|- ( y e. { Z } <-> y = Z ) |
| 11 |
1 3 2
|
rngo0rid |
|- ( ( R e. RingOps /\ Z e. ran G ) -> ( Z G Z ) = Z ) |
| 12 |
4 11
|
mpdan |
|- ( R e. RingOps -> ( Z G Z ) = Z ) |
| 13 |
|
ovex |
|- ( Z G Z ) e. _V |
| 14 |
13
|
elsn |
|- ( ( Z G Z ) e. { Z } <-> ( Z G Z ) = Z ) |
| 15 |
12 14
|
sylibr |
|- ( R e. RingOps -> ( Z G Z ) e. { Z } ) |
| 16 |
|
oveq2 |
|- ( y = Z -> ( Z G y ) = ( Z G Z ) ) |
| 17 |
16
|
eleq1d |
|- ( y = Z -> ( ( Z G y ) e. { Z } <-> ( Z G Z ) e. { Z } ) ) |
| 18 |
15 17
|
syl5ibrcom |
|- ( R e. RingOps -> ( y = Z -> ( Z G y ) e. { Z } ) ) |
| 19 |
10 18
|
biimtrid |
|- ( R e. RingOps -> ( y e. { Z } -> ( Z G y ) e. { Z } ) ) |
| 20 |
19
|
ralrimiv |
|- ( R e. RingOps -> A. y e. { Z } ( Z G y ) e. { Z } ) |
| 21 |
|
eqid |
|- ( 2nd ` R ) = ( 2nd ` R ) |
| 22 |
2 3 1 21
|
rngorz |
|- ( ( R e. RingOps /\ z e. ran G ) -> ( z ( 2nd ` R ) Z ) = Z ) |
| 23 |
|
ovex |
|- ( z ( 2nd ` R ) Z ) e. _V |
| 24 |
23
|
elsn |
|- ( ( z ( 2nd ` R ) Z ) e. { Z } <-> ( z ( 2nd ` R ) Z ) = Z ) |
| 25 |
22 24
|
sylibr |
|- ( ( R e. RingOps /\ z e. ran G ) -> ( z ( 2nd ` R ) Z ) e. { Z } ) |
| 26 |
2 3 1 21
|
rngolz |
|- ( ( R e. RingOps /\ z e. ran G ) -> ( Z ( 2nd ` R ) z ) = Z ) |
| 27 |
|
ovex |
|- ( Z ( 2nd ` R ) z ) e. _V |
| 28 |
27
|
elsn |
|- ( ( Z ( 2nd ` R ) z ) e. { Z } <-> ( Z ( 2nd ` R ) z ) = Z ) |
| 29 |
26 28
|
sylibr |
|- ( ( R e. RingOps /\ z e. ran G ) -> ( Z ( 2nd ` R ) z ) e. { Z } ) |
| 30 |
25 29
|
jca |
|- ( ( R e. RingOps /\ z e. ran G ) -> ( ( z ( 2nd ` R ) Z ) e. { Z } /\ ( Z ( 2nd ` R ) z ) e. { Z } ) ) |
| 31 |
30
|
ralrimiva |
|- ( R e. RingOps -> A. z e. ran G ( ( z ( 2nd ` R ) Z ) e. { Z } /\ ( Z ( 2nd ` R ) z ) e. { Z } ) ) |
| 32 |
20 31
|
jca |
|- ( R e. RingOps -> ( A. y e. { Z } ( Z G y ) e. { Z } /\ A. z e. ran G ( ( z ( 2nd ` R ) Z ) e. { Z } /\ ( Z ( 2nd ` R ) z ) e. { Z } ) ) ) |
| 33 |
|
oveq1 |
|- ( x = Z -> ( x G y ) = ( Z G y ) ) |
| 34 |
33
|
eleq1d |
|- ( x = Z -> ( ( x G y ) e. { Z } <-> ( Z G y ) e. { Z } ) ) |
| 35 |
34
|
ralbidv |
|- ( x = Z -> ( A. y e. { Z } ( x G y ) e. { Z } <-> A. y e. { Z } ( Z G y ) e. { Z } ) ) |
| 36 |
|
oveq2 |
|- ( x = Z -> ( z ( 2nd ` R ) x ) = ( z ( 2nd ` R ) Z ) ) |
| 37 |
36
|
eleq1d |
|- ( x = Z -> ( ( z ( 2nd ` R ) x ) e. { Z } <-> ( z ( 2nd ` R ) Z ) e. { Z } ) ) |
| 38 |
|
oveq1 |
|- ( x = Z -> ( x ( 2nd ` R ) z ) = ( Z ( 2nd ` R ) z ) ) |
| 39 |
38
|
eleq1d |
|- ( x = Z -> ( ( x ( 2nd ` R ) z ) e. { Z } <-> ( Z ( 2nd ` R ) z ) e. { Z } ) ) |
| 40 |
37 39
|
anbi12d |
|- ( x = Z -> ( ( ( z ( 2nd ` R ) x ) e. { Z } /\ ( x ( 2nd ` R ) z ) e. { Z } ) <-> ( ( z ( 2nd ` R ) Z ) e. { Z } /\ ( Z ( 2nd ` R ) z ) e. { Z } ) ) ) |
| 41 |
40
|
ralbidv |
|- ( x = Z -> ( A. z e. ran G ( ( z ( 2nd ` R ) x ) e. { Z } /\ ( x ( 2nd ` R ) z ) e. { Z } ) <-> A. z e. ran G ( ( z ( 2nd ` R ) Z ) e. { Z } /\ ( Z ( 2nd ` R ) z ) e. { Z } ) ) ) |
| 42 |
35 41
|
anbi12d |
|- ( x = Z -> ( ( A. y e. { Z } ( x G y ) e. { Z } /\ A. z e. ran G ( ( z ( 2nd ` R ) x ) e. { Z } /\ ( x ( 2nd ` R ) z ) e. { Z } ) ) <-> ( A. y e. { Z } ( Z G y ) e. { Z } /\ A. z e. ran G ( ( z ( 2nd ` R ) Z ) e. { Z } /\ ( Z ( 2nd ` R ) z ) e. { Z } ) ) ) ) |
| 43 |
32 42
|
syl5ibrcom |
|- ( R e. RingOps -> ( x = Z -> ( A. y e. { Z } ( x G y ) e. { Z } /\ A. z e. ran G ( ( z ( 2nd ` R ) x ) e. { Z } /\ ( x ( 2nd ` R ) z ) e. { Z } ) ) ) ) |
| 44 |
9 43
|
biimtrid |
|- ( R e. RingOps -> ( x e. { Z } -> ( A. y e. { Z } ( x G y ) e. { Z } /\ A. z e. ran G ( ( z ( 2nd ` R ) x ) e. { Z } /\ ( x ( 2nd ` R ) z ) e. { Z } ) ) ) ) |
| 45 |
44
|
ralrimiv |
|- ( R e. RingOps -> A. x e. { Z } ( A. y e. { Z } ( x G y ) e. { Z } /\ A. z e. ran G ( ( z ( 2nd ` R ) x ) e. { Z } /\ ( x ( 2nd ` R ) z ) e. { Z } ) ) ) |
| 46 |
1 21 3 2
|
isidl |
|- ( R e. RingOps -> ( { Z } e. ( Idl ` R ) <-> ( { Z } C_ ran G /\ Z e. { Z } /\ A. x e. { Z } ( A. y e. { Z } ( x G y ) e. { Z } /\ A. z e. ran G ( ( z ( 2nd ` R ) x ) e. { Z } /\ ( x ( 2nd ` R ) z ) e. { Z } ) ) ) ) ) |
| 47 |
5 8 45 46
|
mpbir3and |
|- ( R e. RingOps -> { Z } e. ( Idl ` R ) ) |