| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringlz.1 |
|- Z = ( GId ` G ) |
| 2 |
|
ringlz.2 |
|- X = ran G |
| 3 |
|
ringlz.3 |
|- G = ( 1st ` R ) |
| 4 |
|
ringlz.4 |
|- H = ( 2nd ` R ) |
| 5 |
3
|
rngogrpo |
|- ( R e. RingOps -> G e. GrpOp ) |
| 6 |
2 1
|
grpoidcl |
|- ( G e. GrpOp -> Z e. X ) |
| 7 |
2 1
|
grpolid |
|- ( ( G e. GrpOp /\ Z e. X ) -> ( Z G Z ) = Z ) |
| 8 |
5 6 7
|
syl2anc2 |
|- ( R e. RingOps -> ( Z G Z ) = Z ) |
| 9 |
8
|
adantr |
|- ( ( R e. RingOps /\ A e. X ) -> ( Z G Z ) = Z ) |
| 10 |
9
|
oveq1d |
|- ( ( R e. RingOps /\ A e. X ) -> ( ( Z G Z ) H A ) = ( Z H A ) ) |
| 11 |
3 2 1
|
rngo0cl |
|- ( R e. RingOps -> Z e. X ) |
| 12 |
11
|
adantr |
|- ( ( R e. RingOps /\ A e. X ) -> Z e. X ) |
| 13 |
|
simpr |
|- ( ( R e. RingOps /\ A e. X ) -> A e. X ) |
| 14 |
12 12 13
|
3jca |
|- ( ( R e. RingOps /\ A e. X ) -> ( Z e. X /\ Z e. X /\ A e. X ) ) |
| 15 |
3 4 2
|
rngodir |
|- ( ( R e. RingOps /\ ( Z e. X /\ Z e. X /\ A e. X ) ) -> ( ( Z G Z ) H A ) = ( ( Z H A ) G ( Z H A ) ) ) |
| 16 |
14 15
|
syldan |
|- ( ( R e. RingOps /\ A e. X ) -> ( ( Z G Z ) H A ) = ( ( Z H A ) G ( Z H A ) ) ) |
| 17 |
5
|
adantr |
|- ( ( R e. RingOps /\ A e. X ) -> G e. GrpOp ) |
| 18 |
|
simpl |
|- ( ( R e. RingOps /\ A e. X ) -> R e. RingOps ) |
| 19 |
3 4 2
|
rngocl |
|- ( ( R e. RingOps /\ Z e. X /\ A e. X ) -> ( Z H A ) e. X ) |
| 20 |
18 12 13 19
|
syl3anc |
|- ( ( R e. RingOps /\ A e. X ) -> ( Z H A ) e. X ) |
| 21 |
2 1
|
grporid |
|- ( ( G e. GrpOp /\ ( Z H A ) e. X ) -> ( ( Z H A ) G Z ) = ( Z H A ) ) |
| 22 |
21
|
eqcomd |
|- ( ( G e. GrpOp /\ ( Z H A ) e. X ) -> ( Z H A ) = ( ( Z H A ) G Z ) ) |
| 23 |
17 20 22
|
syl2anc |
|- ( ( R e. RingOps /\ A e. X ) -> ( Z H A ) = ( ( Z H A ) G Z ) ) |
| 24 |
10 16 23
|
3eqtr3d |
|- ( ( R e. RingOps /\ A e. X ) -> ( ( Z H A ) G ( Z H A ) ) = ( ( Z H A ) G Z ) ) |
| 25 |
2
|
grpolcan |
|- ( ( G e. GrpOp /\ ( ( Z H A ) e. X /\ Z e. X /\ ( Z H A ) e. X ) ) -> ( ( ( Z H A ) G ( Z H A ) ) = ( ( Z H A ) G Z ) <-> ( Z H A ) = Z ) ) |
| 26 |
17 20 12 20 25
|
syl13anc |
|- ( ( R e. RingOps /\ A e. X ) -> ( ( ( Z H A ) G ( Z H A ) ) = ( ( Z H A ) G Z ) <-> ( Z H A ) = Z ) ) |
| 27 |
24 26
|
mpbid |
|- ( ( R e. RingOps /\ A e. X ) -> ( Z H A ) = Z ) |