Step |
Hyp |
Ref |
Expression |
1 |
|
1idl.1 |
|- G = ( 1st ` R ) |
2 |
|
1idl.2 |
|- H = ( 2nd ` R ) |
3 |
|
1idl.3 |
|- X = ran G |
4 |
|
1idl.4 |
|- U = ( GId ` H ) |
5 |
1 3
|
idlss |
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> I C_ X ) |
6 |
5
|
adantr |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ U e. I ) -> I C_ X ) |
7 |
1
|
rneqi |
|- ran G = ran ( 1st ` R ) |
8 |
3 7
|
eqtri |
|- X = ran ( 1st ` R ) |
9 |
2 8 4
|
rngolidm |
|- ( ( R e. RingOps /\ x e. X ) -> ( U H x ) = x ) |
10 |
9
|
ad2ant2rl |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ ( U e. I /\ x e. X ) ) -> ( U H x ) = x ) |
11 |
1 2 3
|
idlrmulcl |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ ( U e. I /\ x e. X ) ) -> ( U H x ) e. I ) |
12 |
10 11
|
eqeltrrd |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ ( U e. I /\ x e. X ) ) -> x e. I ) |
13 |
12
|
expr |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ U e. I ) -> ( x e. X -> x e. I ) ) |
14 |
13
|
ssrdv |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ U e. I ) -> X C_ I ) |
15 |
6 14
|
eqssd |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ U e. I ) -> I = X ) |
16 |
15
|
ex |
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> ( U e. I -> I = X ) ) |
17 |
8 2 4
|
rngo1cl |
|- ( R e. RingOps -> U e. X ) |
18 |
17
|
adantr |
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> U e. X ) |
19 |
|
eleq2 |
|- ( I = X -> ( U e. I <-> U e. X ) ) |
20 |
18 19
|
syl5ibrcom |
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> ( I = X -> U e. I ) ) |
21 |
16 20
|
impbid |
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> ( U e. I <-> I = X ) ) |