| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ring.1 |
|- G = ( 1st ` R ) |
| 2 |
|
0ring.2 |
|- H = ( 2nd ` R ) |
| 3 |
|
0ring.3 |
|- X = ran G |
| 4 |
|
0ring.4 |
|- Z = ( GId ` G ) |
| 5 |
|
0ring.5 |
|- U = ( GId ` H ) |
| 6 |
4
|
fvexi |
|- Z e. _V |
| 7 |
6
|
snid |
|- Z e. { Z } |
| 8 |
|
eleq1 |
|- ( Z = U -> ( Z e. { Z } <-> U e. { Z } ) ) |
| 9 |
7 8
|
mpbii |
|- ( Z = U -> U e. { Z } ) |
| 10 |
1 4
|
0idl |
|- ( R e. RingOps -> { Z } e. ( Idl ` R ) ) |
| 11 |
1 2 3 5
|
1idl |
|- ( ( R e. RingOps /\ { Z } e. ( Idl ` R ) ) -> ( U e. { Z } <-> { Z } = X ) ) |
| 12 |
10 11
|
mpdan |
|- ( R e. RingOps -> ( U e. { Z } <-> { Z } = X ) ) |
| 13 |
9 12
|
imbitrid |
|- ( R e. RingOps -> ( Z = U -> { Z } = X ) ) |
| 14 |
|
eqcom |
|- ( { Z } = X <-> X = { Z } ) |
| 15 |
13 14
|
imbitrdi |
|- ( R e. RingOps -> ( Z = U -> X = { Z } ) ) |
| 16 |
1
|
rneqi |
|- ran G = ran ( 1st ` R ) |
| 17 |
3 16
|
eqtri |
|- X = ran ( 1st ` R ) |
| 18 |
17 2 5
|
rngo1cl |
|- ( R e. RingOps -> U e. X ) |
| 19 |
|
eleq2 |
|- ( X = { Z } -> ( U e. X <-> U e. { Z } ) ) |
| 20 |
|
elsni |
|- ( U e. { Z } -> U = Z ) |
| 21 |
20
|
eqcomd |
|- ( U e. { Z } -> Z = U ) |
| 22 |
19 21
|
biimtrdi |
|- ( X = { Z } -> ( U e. X -> Z = U ) ) |
| 23 |
18 22
|
syl5com |
|- ( R e. RingOps -> ( X = { Z } -> Z = U ) ) |
| 24 |
15 23
|
impbid |
|- ( R e. RingOps -> ( Z = U <-> X = { Z } ) ) |