Step |
Hyp |
Ref |
Expression |
1 |
|
0ring.1 |
|- G = ( 1st ` R ) |
2 |
|
0ring.2 |
|- H = ( 2nd ` R ) |
3 |
|
0ring.3 |
|- X = ran G |
4 |
|
0ring.4 |
|- Z = ( GId ` G ) |
5 |
|
0ring.5 |
|- U = ( GId ` H ) |
6 |
4
|
fvexi |
|- Z e. _V |
7 |
6
|
snid |
|- Z e. { Z } |
8 |
|
eleq1 |
|- ( Z = U -> ( Z e. { Z } <-> U e. { Z } ) ) |
9 |
7 8
|
mpbii |
|- ( Z = U -> U e. { Z } ) |
10 |
1 4
|
0idl |
|- ( R e. RingOps -> { Z } e. ( Idl ` R ) ) |
11 |
1 2 3 5
|
1idl |
|- ( ( R e. RingOps /\ { Z } e. ( Idl ` R ) ) -> ( U e. { Z } <-> { Z } = X ) ) |
12 |
10 11
|
mpdan |
|- ( R e. RingOps -> ( U e. { Z } <-> { Z } = X ) ) |
13 |
9 12
|
syl5ib |
|- ( R e. RingOps -> ( Z = U -> { Z } = X ) ) |
14 |
|
eqcom |
|- ( { Z } = X <-> X = { Z } ) |
15 |
13 14
|
syl6ib |
|- ( R e. RingOps -> ( Z = U -> X = { Z } ) ) |
16 |
1
|
rneqi |
|- ran G = ran ( 1st ` R ) |
17 |
3 16
|
eqtri |
|- X = ran ( 1st ` R ) |
18 |
17 2 5
|
rngo1cl |
|- ( R e. RingOps -> U e. X ) |
19 |
|
eleq2 |
|- ( X = { Z } -> ( U e. X <-> U e. { Z } ) ) |
20 |
|
elsni |
|- ( U e. { Z } -> U = Z ) |
21 |
20
|
eqcomd |
|- ( U e. { Z } -> Z = U ) |
22 |
19 21
|
syl6bi |
|- ( X = { Z } -> ( U e. X -> Z = U ) ) |
23 |
18 22
|
syl5com |
|- ( R e. RingOps -> ( X = { Z } -> Z = U ) ) |
24 |
15 23
|
impbid |
|- ( R e. RingOps -> ( Z = U <-> X = { Z } ) ) |