Metamath Proof Explorer


Theorem 0rngo

Description: In a ring, 0 = 1 iff the ring contains only 0 . (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Hypotheses 0ring.1 G = 1 st R
0ring.2 H = 2 nd R
0ring.3 X = ran G
0ring.4 Z = GId G
0ring.5 U = GId H
Assertion 0rngo R RingOps Z = U X = Z

Proof

Step Hyp Ref Expression
1 0ring.1 G = 1 st R
2 0ring.2 H = 2 nd R
3 0ring.3 X = ran G
4 0ring.4 Z = GId G
5 0ring.5 U = GId H
6 4 fvexi Z V
7 6 snid Z Z
8 eleq1 Z = U Z Z U Z
9 7 8 mpbii Z = U U Z
10 1 4 0idl R RingOps Z Idl R
11 1 2 3 5 1idl R RingOps Z Idl R U Z Z = X
12 10 11 mpdan R RingOps U Z Z = X
13 9 12 syl5ib R RingOps Z = U Z = X
14 eqcom Z = X X = Z
15 13 14 syl6ib R RingOps Z = U X = Z
16 1 rneqi ran G = ran 1 st R
17 3 16 eqtri X = ran 1 st R
18 17 2 5 rngo1cl R RingOps U X
19 eleq2 X = Z U X U Z
20 elsni U Z U = Z
21 20 eqcomd U Z Z = U
22 19 21 syl6bi X = Z U X Z = U
23 18 22 syl5com R RingOps X = Z Z = U
24 15 23 impbid R RingOps Z = U X = Z