Description: Two ways of expressing the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 1idl.1 | |
|
1idl.2 | |
||
1idl.3 | |
||
1idl.4 | |
||
Assertion | 1idl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1idl.1 | |
|
2 | 1idl.2 | |
|
3 | 1idl.3 | |
|
4 | 1idl.4 | |
|
5 | 1 3 | idlss | |
6 | 5 | adantr | |
7 | 1 | rneqi | |
8 | 3 7 | eqtri | |
9 | 2 8 4 | rngolidm | |
10 | 9 | ad2ant2rl | |
11 | 1 2 3 | idlrmulcl | |
12 | 10 11 | eqeltrrd | |
13 | 12 | expr | |
14 | 13 | ssrdv | |
15 | 6 14 | eqssd | |
16 | 15 | ex | |
17 | 8 2 4 | rngo1cl | |
18 | 17 | adantr | |
19 | eleq2 | |
|
20 | 18 19 | syl5ibrcom | |
21 | 16 20 | impbid | |