Metamath Proof Explorer


Theorem 1idl

Description: Two ways of expressing the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses 1idl.1 G = 1 st R
1idl.2 H = 2 nd R
1idl.3 X = ran G
1idl.4 U = GId H
Assertion 1idl R RingOps I Idl R U I I = X

Proof

Step Hyp Ref Expression
1 1idl.1 G = 1 st R
2 1idl.2 H = 2 nd R
3 1idl.3 X = ran G
4 1idl.4 U = GId H
5 1 3 idlss R RingOps I Idl R I X
6 5 adantr R RingOps I Idl R U I I X
7 1 rneqi ran G = ran 1 st R
8 3 7 eqtri X = ran 1 st R
9 2 8 4 rngolidm R RingOps x X U H x = x
10 9 ad2ant2rl R RingOps I Idl R U I x X U H x = x
11 1 2 3 idlrmulcl R RingOps I Idl R U I x X U H x I
12 10 11 eqeltrrd R RingOps I Idl R U I x X x I
13 12 expr R RingOps I Idl R U I x X x I
14 13 ssrdv R RingOps I Idl R U I X I
15 6 14 eqssd R RingOps I Idl R U I I = X
16 15 ex R RingOps I Idl R U I I = X
17 8 2 4 rngo1cl R RingOps U X
18 17 adantr R RingOps I Idl R U X
19 eleq2 I = X U I U X
20 18 19 syl5ibrcom R RingOps I Idl R I = X U I
21 16 20 impbid R RingOps I Idl R U I I = X