Metamath Proof Explorer


Theorem 1idl

Description: Two ways of expressing the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses 1idl.1 G=1stR
1idl.2 H=2ndR
1idl.3 X=ranG
1idl.4 U=GIdH
Assertion 1idl RRingOpsIIdlRUII=X

Proof

Step Hyp Ref Expression
1 1idl.1 G=1stR
2 1idl.2 H=2ndR
3 1idl.3 X=ranG
4 1idl.4 U=GIdH
5 1 3 idlss RRingOpsIIdlRIX
6 5 adantr RRingOpsIIdlRUIIX
7 1 rneqi ranG=ran1stR
8 3 7 eqtri X=ran1stR
9 2 8 4 rngolidm RRingOpsxXUHx=x
10 9 ad2ant2rl RRingOpsIIdlRUIxXUHx=x
11 1 2 3 idlrmulcl RRingOpsIIdlRUIxXUHxI
12 10 11 eqeltrrd RRingOpsIIdlRUIxXxI
13 12 expr RRingOpsIIdlRUIxXxI
14 13 ssrdv RRingOpsIIdlRUIXI
15 6 14 eqssd RRingOpsIIdlRUII=X
16 15 ex RRingOpsIIdlRUII=X
17 8 2 4 rngo1cl RRingOpsUX
18 17 adantr RRingOpsIIdlRUX
19 eleq2 I=XUIUX
20 18 19 syl5ibrcom RRingOpsIIdlRI=XUI
21 16 20 impbid RRingOpsIIdlRUII=X