Metamath Proof Explorer


Theorem rngo1cl

Description: The unity element of a ring belongs to the base set. (Contributed by FL, 12-Feb-2010) (New usage is discouraged.)

Ref Expression
Hypotheses ring1cl.1 X=ran1stR
ring1cl.2 H=2ndR
ring1cl.3 U=GIdH
Assertion rngo1cl RRingOpsUX

Proof

Step Hyp Ref Expression
1 ring1cl.1 X=ran1stR
2 ring1cl.2 H=2ndR
3 ring1cl.3 U=GIdH
4 2 rngomndo RRingOpsHMndOp
5 2 eleq1i HMndOp2ndRMndOp
6 mndoismgmOLD 2ndRMndOp2ndRMagma
7 mndoisexid 2ndRMndOp2ndRExId
8 6 7 jca 2ndRMndOp2ndRMagma2ndRExId
9 5 8 sylbi HMndOp2ndRMagma2ndRExId
10 4 9 syl RRingOps2ndRMagma2ndRExId
11 elin 2ndRMagmaExId2ndRMagma2ndRExId
12 10 11 sylibr RRingOps2ndRMagmaExId
13 eqid ran2ndR=ran2ndR
14 2 fveq2i GIdH=GId2ndR
15 3 14 eqtri U=GId2ndR
16 13 15 iorlid 2ndRMagmaExIdUran2ndR
17 12 16 syl RRingOpsUran2ndR
18 eqid 2ndR=2ndR
19 eqid 1stR=1stR
20 18 19 rngorn1eq RRingOpsran1stR=ran2ndR
21 eqtr X=ran1stRran1stR=ran2ndRX=ran2ndR
22 21 eleq2d X=ran1stRran1stR=ran2ndRUXUran2ndR
23 1 20 22 sylancr RRingOpsUXUran2ndR
24 17 23 mpbird RRingOpsUX