Metamath Proof Explorer


Definition df-exid

Description: A device to add an identity element to various sorts of internal operations. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.)

Ref Expression
Assertion df-exid ExId=g|xdomdomgydomdomgxgy=yygx=y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cexid classExId
1 vg setvarg
2 vx setvarx
3 1 cv setvarg
4 3 cdm classdomg
5 4 cdm classdomdomg
6 vy setvary
7 2 cv setvarx
8 6 cv setvary
9 7 8 3 co classxgy
10 9 8 wceq wffxgy=y
11 8 7 3 co classygx
12 11 8 wceq wffygx=y
13 10 12 wa wffxgy=yygx=y
14 13 6 5 wral wffydomdomgxgy=yygx=y
15 14 2 5 wrex wffxdomdomgydomdomgxgy=yygx=y
16 15 1 cab classg|xdomdomgydomdomgxgy=yygx=y
17 0 16 wceq wffExId=g|xdomdomgydomdomgxgy=yygx=y