Metamath Proof Explorer


Theorem isass

Description: The predicate "is an associative operation". (Contributed by FL, 1-Nov-2009) (New usage is discouraged.)

Ref Expression
Hypothesis isass.1 X=domdomG
Assertion isass GAGAssxXyXzXxGyGz=xGyGz

Proof

Step Hyp Ref Expression
1 isass.1 X=domdomG
2 dmeq g=Gdomg=domG
3 2 dmeqd g=Gdomdomg=domdomG
4 3 eleq2d g=GxdomdomgxdomdomG
5 3 eleq2d g=GydomdomgydomdomG
6 3 eleq2d g=GzdomdomgzdomdomG
7 4 5 6 3anbi123d g=GxdomdomgydomdomgzdomdomgxdomdomGydomdomGzdomdomG
8 oveq g=Gxgy=xGy
9 8 oveq1d g=Gxgygz=xGygz
10 oveq g=GxGygz=xGyGz
11 9 10 eqtrd g=Gxgygz=xGyGz
12 oveq g=Gygz=yGz
13 12 oveq2d g=Gxgygz=xgyGz
14 oveq g=GxgyGz=xGyGz
15 13 14 eqtrd g=Gxgygz=xGyGz
16 11 15 eqeq12d g=Gxgygz=xgygzxGyGz=xGyGz
17 7 16 imbi12d g=Gxdomdomgydomdomgzdomdomgxgygz=xgygzxdomdomGydomdomGzdomdomGxGyGz=xGyGz
18 17 albidv g=Gzxdomdomgydomdomgzdomdomgxgygz=xgygzzxdomdomGydomdomGzdomdomGxGyGz=xGyGz
19 18 2albidv g=Gxyzxdomdomgydomdomgzdomdomgxgygz=xgygzxyzxdomdomGydomdomGzdomdomGxGyGz=xGyGz
20 r3al xdomdomgydomdomgzdomdomgxgygz=xgygzxyzxdomdomgydomdomgzdomdomgxgygz=xgygz
21 r3al xdomdomGydomdomGzdomdomGxGyGz=xGyGzxyzxdomdomGydomdomGzdomdomGxGyGz=xGyGz
22 19 20 21 3bitr4g g=Gxdomdomgydomdomgzdomdomgxgygz=xgygzxdomdomGydomdomGzdomdomGxGyGz=xGyGz
23 1 eqcomi domdomG=X
24 23 a1i g=GdomdomG=X
25 24 raleqdv g=GydomdomGzdomdomGxGyGz=xGyGzyXzdomdomGxGyGz=xGyGz
26 24 25 raleqbidv g=GxdomdomGydomdomGzdomdomGxGyGz=xGyGzxXyXzdomdomGxGyGz=xGyGz
27 24 raleqdv g=GzdomdomGxGyGz=xGyGzzXxGyGz=xGyGz
28 27 2ralbidv g=GxXyXzdomdomGxGyGz=xGyGzxXyXzXxGyGz=xGyGz
29 22 26 28 3bitrd g=Gxdomdomgydomdomgzdomdomgxgygz=xgygzxXyXzXxGyGz=xGyGz
30 df-ass Ass=g|xdomdomgydomdomgzdomdomgxgygz=xgygz
31 29 30 elab2g GAGAssxXyXzXxGyGz=xGyGz