| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0idl.1 |
|
| 2 |
|
0idl.2 |
|
| 3 |
|
eqid |
|
| 4 |
1 3 2
|
rngo0cl |
|
| 5 |
4
|
snssd |
|
| 6 |
2
|
fvexi |
|
| 7 |
6
|
snid |
|
| 8 |
7
|
a1i |
|
| 9 |
|
velsn |
|
| 10 |
|
velsn |
|
| 11 |
1 3 2
|
rngo0rid |
|
| 12 |
4 11
|
mpdan |
|
| 13 |
|
ovex |
|
| 14 |
13
|
elsn |
|
| 15 |
12 14
|
sylibr |
|
| 16 |
|
oveq2 |
|
| 17 |
16
|
eleq1d |
|
| 18 |
15 17
|
syl5ibrcom |
|
| 19 |
10 18
|
biimtrid |
|
| 20 |
19
|
ralrimiv |
|
| 21 |
|
eqid |
|
| 22 |
2 3 1 21
|
rngorz |
|
| 23 |
|
ovex |
|
| 24 |
23
|
elsn |
|
| 25 |
22 24
|
sylibr |
|
| 26 |
2 3 1 21
|
rngolz |
|
| 27 |
|
ovex |
|
| 28 |
27
|
elsn |
|
| 29 |
26 28
|
sylibr |
|
| 30 |
25 29
|
jca |
|
| 31 |
30
|
ralrimiva |
|
| 32 |
20 31
|
jca |
|
| 33 |
|
oveq1 |
|
| 34 |
33
|
eleq1d |
|
| 35 |
34
|
ralbidv |
|
| 36 |
|
oveq2 |
|
| 37 |
36
|
eleq1d |
|
| 38 |
|
oveq1 |
|
| 39 |
38
|
eleq1d |
|
| 40 |
37 39
|
anbi12d |
|
| 41 |
40
|
ralbidv |
|
| 42 |
35 41
|
anbi12d |
|
| 43 |
32 42
|
syl5ibrcom |
|
| 44 |
9 43
|
biimtrid |
|
| 45 |
44
|
ralrimiv |
|
| 46 |
1 21 3 2
|
isidl |
|
| 47 |
5 8 45 46
|
mpbir3and |
|