Step |
Hyp |
Ref |
Expression |
1 |
|
divrngidl.1 |
|
2 |
|
divrngidl.2 |
|
3 |
|
divrngidl.3 |
|
4 |
|
divrngidl.4 |
|
5 |
|
eqid |
|
6 |
1 2 4 3 5
|
isdrngo2 |
|
7 |
1 4
|
idl0cl |
|
8 |
7
|
adantr |
|
9 |
4
|
fvexi |
|
10 |
9
|
snss |
|
11 |
|
necom |
|
12 |
|
pssdifn0 |
|
13 |
|
n0 |
|
14 |
12 13
|
sylib |
|
15 |
10 11 14
|
syl2anb |
|
16 |
1 3
|
idlss |
|
17 |
|
ssdif |
|
18 |
17
|
sselda |
|
19 |
16 18
|
sylan |
|
20 |
|
oveq2 |
|
21 |
20
|
eqeq1d |
|
22 |
21
|
rexbidv |
|
23 |
22
|
rspcva |
|
24 |
19 23
|
sylan |
|
25 |
|
eldifi |
|
26 |
|
eldifi |
|
27 |
25 26
|
anim12i |
|
28 |
1 2 3
|
idllmulcl |
|
29 |
1 2 3 5
|
1idl |
|
30 |
29
|
biimpd |
|
31 |
30
|
adantr |
|
32 |
|
eleq1 |
|
33 |
32
|
imbi1d |
|
34 |
31 33
|
syl5ibrcom |
|
35 |
28 34
|
mpid |
|
36 |
27 35
|
sylan2 |
|
37 |
36
|
anassrs |
|
38 |
37
|
rexlimdva |
|
39 |
38
|
imp |
|
40 |
24 39
|
syldan |
|
41 |
40
|
an32s |
|
42 |
41
|
ex |
|
43 |
42
|
exlimdv |
|
44 |
15 43
|
syl5 |
|
45 |
8 44
|
mpand |
|
46 |
45
|
an32s |
|
47 |
|
neor |
|
48 |
46 47
|
sylibr |
|
49 |
48
|
ex |
|
50 |
1 4
|
0idl |
|
51 |
|
eleq1 |
|
52 |
50 51
|
syl5ibrcom |
|
53 |
1 3
|
rngoidl |
|
54 |
|
eleq1 |
|
55 |
53 54
|
syl5ibrcom |
|
56 |
52 55
|
jaod |
|
57 |
56
|
adantr |
|
58 |
49 57
|
impbid |
|
59 |
|
vex |
|
60 |
59
|
elpr |
|
61 |
58 60
|
bitr4di |
|
62 |
61
|
eqrdv |
|
63 |
62
|
adantrl |
|
64 |
6 63
|
sylbi |
|