Step |
Hyp |
Ref |
Expression |
1 |
|
divrngidl.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
divrngidl.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
3 |
|
divrngidl.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
|
divrngidl.4 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( GId ‘ 𝐻 ) = ( GId ‘ 𝐻 ) |
6 |
1 2 4 3 5
|
isdrngo2 |
⊢ ( 𝑅 ∈ DivRingOps ↔ ( 𝑅 ∈ RingOps ∧ ( ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = ( GId ‘ 𝐻 ) ) ) ) |
7 |
1 4
|
idl0cl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) → 𝑍 ∈ 𝑖 ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = ( GId ‘ 𝐻 ) ) → 𝑍 ∈ 𝑖 ) |
9 |
4
|
fvexi |
⊢ 𝑍 ∈ V |
10 |
9
|
snss |
⊢ ( 𝑍 ∈ 𝑖 ↔ { 𝑍 } ⊆ 𝑖 ) |
11 |
|
necom |
⊢ ( 𝑖 ≠ { 𝑍 } ↔ { 𝑍 } ≠ 𝑖 ) |
12 |
|
pssdifn0 |
⊢ ( ( { 𝑍 } ⊆ 𝑖 ∧ { 𝑍 } ≠ 𝑖 ) → ( 𝑖 ∖ { 𝑍 } ) ≠ ∅ ) |
13 |
|
n0 |
⊢ ( ( 𝑖 ∖ { 𝑍 } ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( 𝑖 ∖ { 𝑍 } ) ) |
14 |
12 13
|
sylib |
⊢ ( ( { 𝑍 } ⊆ 𝑖 ∧ { 𝑍 } ≠ 𝑖 ) → ∃ 𝑧 𝑧 ∈ ( 𝑖 ∖ { 𝑍 } ) ) |
15 |
10 11 14
|
syl2anb |
⊢ ( ( 𝑍 ∈ 𝑖 ∧ 𝑖 ≠ { 𝑍 } ) → ∃ 𝑧 𝑧 ∈ ( 𝑖 ∖ { 𝑍 } ) ) |
16 |
1 3
|
idlss |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) → 𝑖 ⊆ 𝑋 ) |
17 |
|
ssdif |
⊢ ( 𝑖 ⊆ 𝑋 → ( 𝑖 ∖ { 𝑍 } ) ⊆ ( 𝑋 ∖ { 𝑍 } ) ) |
18 |
17
|
sselda |
⊢ ( ( 𝑖 ⊆ 𝑋 ∧ 𝑧 ∈ ( 𝑖 ∖ { 𝑍 } ) ) → 𝑧 ∈ ( 𝑋 ∖ { 𝑍 } ) ) |
19 |
16 18
|
sylan |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ( 𝑖 ∖ { 𝑍 } ) ) → 𝑧 ∈ ( 𝑋 ∖ { 𝑍 } ) ) |
20 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 𝐻 𝑥 ) = ( 𝑦 𝐻 𝑧 ) ) |
21 |
20
|
eqeq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 𝐻 𝑥 ) = ( GId ‘ 𝐻 ) ↔ ( 𝑦 𝐻 𝑧 ) = ( GId ‘ 𝐻 ) ) ) |
22 |
21
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = ( GId ‘ 𝐻 ) ↔ ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑧 ) = ( GId ‘ 𝐻 ) ) ) |
23 |
22
|
rspcva |
⊢ ( ( 𝑧 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = ( GId ‘ 𝐻 ) ) → ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑧 ) = ( GId ‘ 𝐻 ) ) |
24 |
19 23
|
sylan |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ( 𝑖 ∖ { 𝑍 } ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = ( GId ‘ 𝐻 ) ) → ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑧 ) = ( GId ‘ 𝐻 ) ) |
25 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝑖 ∖ { 𝑍 } ) → 𝑧 ∈ 𝑖 ) |
26 |
|
eldifi |
⊢ ( 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) → 𝑦 ∈ 𝑋 ) |
27 |
25 26
|
anim12i |
⊢ ( ( 𝑧 ∈ ( 𝑖 ∖ { 𝑍 } ) ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝑧 ∈ 𝑖 ∧ 𝑦 ∈ 𝑋 ) ) |
28 |
1 2 3
|
idllmulcl |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑖 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑦 𝐻 𝑧 ) ∈ 𝑖 ) |
29 |
1 2 3 5
|
1idl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) → ( ( GId ‘ 𝐻 ) ∈ 𝑖 ↔ 𝑖 = 𝑋 ) ) |
30 |
29
|
biimpd |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) → ( ( GId ‘ 𝐻 ) ∈ 𝑖 → 𝑖 = 𝑋 ) ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑖 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( GId ‘ 𝐻 ) ∈ 𝑖 → 𝑖 = 𝑋 ) ) |
32 |
|
eleq1 |
⊢ ( ( 𝑦 𝐻 𝑧 ) = ( GId ‘ 𝐻 ) → ( ( 𝑦 𝐻 𝑧 ) ∈ 𝑖 ↔ ( GId ‘ 𝐻 ) ∈ 𝑖 ) ) |
33 |
32
|
imbi1d |
⊢ ( ( 𝑦 𝐻 𝑧 ) = ( GId ‘ 𝐻 ) → ( ( ( 𝑦 𝐻 𝑧 ) ∈ 𝑖 → 𝑖 = 𝑋 ) ↔ ( ( GId ‘ 𝐻 ) ∈ 𝑖 → 𝑖 = 𝑋 ) ) ) |
34 |
31 33
|
syl5ibrcom |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑖 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑦 𝐻 𝑧 ) = ( GId ‘ 𝐻 ) → ( ( 𝑦 𝐻 𝑧 ) ∈ 𝑖 → 𝑖 = 𝑋 ) ) ) |
35 |
28 34
|
mpid |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑖 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑦 𝐻 𝑧 ) = ( GId ‘ 𝐻 ) → 𝑖 = 𝑋 ) ) |
36 |
27 35
|
sylan2 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ ( 𝑖 ∖ { 𝑍 } ) ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) → ( ( 𝑦 𝐻 𝑧 ) = ( GId ‘ 𝐻 ) → 𝑖 = 𝑋 ) ) |
37 |
36
|
anassrs |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ( 𝑖 ∖ { 𝑍 } ) ) ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( ( 𝑦 𝐻 𝑧 ) = ( GId ‘ 𝐻 ) → 𝑖 = 𝑋 ) ) |
38 |
37
|
rexlimdva |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ( 𝑖 ∖ { 𝑍 } ) ) → ( ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑧 ) = ( GId ‘ 𝐻 ) → 𝑖 = 𝑋 ) ) |
39 |
38
|
imp |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ( 𝑖 ∖ { 𝑍 } ) ) ∧ ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑧 ) = ( GId ‘ 𝐻 ) ) → 𝑖 = 𝑋 ) |
40 |
24 39
|
syldan |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ( 𝑖 ∖ { 𝑍 } ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = ( GId ‘ 𝐻 ) ) → 𝑖 = 𝑋 ) |
41 |
40
|
an32s |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = ( GId ‘ 𝐻 ) ) ∧ 𝑧 ∈ ( 𝑖 ∖ { 𝑍 } ) ) → 𝑖 = 𝑋 ) |
42 |
41
|
ex |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = ( GId ‘ 𝐻 ) ) → ( 𝑧 ∈ ( 𝑖 ∖ { 𝑍 } ) → 𝑖 = 𝑋 ) ) |
43 |
42
|
exlimdv |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = ( GId ‘ 𝐻 ) ) → ( ∃ 𝑧 𝑧 ∈ ( 𝑖 ∖ { 𝑍 } ) → 𝑖 = 𝑋 ) ) |
44 |
15 43
|
syl5 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = ( GId ‘ 𝐻 ) ) → ( ( 𝑍 ∈ 𝑖 ∧ 𝑖 ≠ { 𝑍 } ) → 𝑖 = 𝑋 ) ) |
45 |
8 44
|
mpand |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = ( GId ‘ 𝐻 ) ) → ( 𝑖 ≠ { 𝑍 } → 𝑖 = 𝑋 ) ) |
46 |
45
|
an32s |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = ( GId ‘ 𝐻 ) ) ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) → ( 𝑖 ≠ { 𝑍 } → 𝑖 = 𝑋 ) ) |
47 |
|
neor |
⊢ ( ( 𝑖 = { 𝑍 } ∨ 𝑖 = 𝑋 ) ↔ ( 𝑖 ≠ { 𝑍 } → 𝑖 = 𝑋 ) ) |
48 |
46 47
|
sylibr |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = ( GId ‘ 𝐻 ) ) ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) → ( 𝑖 = { 𝑍 } ∨ 𝑖 = 𝑋 ) ) |
49 |
48
|
ex |
⊢ ( ( 𝑅 ∈ RingOps ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = ( GId ‘ 𝐻 ) ) → ( 𝑖 ∈ ( Idl ‘ 𝑅 ) → ( 𝑖 = { 𝑍 } ∨ 𝑖 = 𝑋 ) ) ) |
50 |
1 4
|
0idl |
⊢ ( 𝑅 ∈ RingOps → { 𝑍 } ∈ ( Idl ‘ 𝑅 ) ) |
51 |
|
eleq1 |
⊢ ( 𝑖 = { 𝑍 } → ( 𝑖 ∈ ( Idl ‘ 𝑅 ) ↔ { 𝑍 } ∈ ( Idl ‘ 𝑅 ) ) ) |
52 |
50 51
|
syl5ibrcom |
⊢ ( 𝑅 ∈ RingOps → ( 𝑖 = { 𝑍 } → 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ) |
53 |
1 3
|
rngoidl |
⊢ ( 𝑅 ∈ RingOps → 𝑋 ∈ ( Idl ‘ 𝑅 ) ) |
54 |
|
eleq1 |
⊢ ( 𝑖 = 𝑋 → ( 𝑖 ∈ ( Idl ‘ 𝑅 ) ↔ 𝑋 ∈ ( Idl ‘ 𝑅 ) ) ) |
55 |
53 54
|
syl5ibrcom |
⊢ ( 𝑅 ∈ RingOps → ( 𝑖 = 𝑋 → 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ) |
56 |
52 55
|
jaod |
⊢ ( 𝑅 ∈ RingOps → ( ( 𝑖 = { 𝑍 } ∨ 𝑖 = 𝑋 ) → 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ) |
57 |
56
|
adantr |
⊢ ( ( 𝑅 ∈ RingOps ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = ( GId ‘ 𝐻 ) ) → ( ( 𝑖 = { 𝑍 } ∨ 𝑖 = 𝑋 ) → 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ) |
58 |
49 57
|
impbid |
⊢ ( ( 𝑅 ∈ RingOps ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = ( GId ‘ 𝐻 ) ) → ( 𝑖 ∈ ( Idl ‘ 𝑅 ) ↔ ( 𝑖 = { 𝑍 } ∨ 𝑖 = 𝑋 ) ) ) |
59 |
|
vex |
⊢ 𝑖 ∈ V |
60 |
59
|
elpr |
⊢ ( 𝑖 ∈ { { 𝑍 } , 𝑋 } ↔ ( 𝑖 = { 𝑍 } ∨ 𝑖 = 𝑋 ) ) |
61 |
58 60
|
bitr4di |
⊢ ( ( 𝑅 ∈ RingOps ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = ( GId ‘ 𝐻 ) ) → ( 𝑖 ∈ ( Idl ‘ 𝑅 ) ↔ 𝑖 ∈ { { 𝑍 } , 𝑋 } ) ) |
62 |
61
|
eqrdv |
⊢ ( ( 𝑅 ∈ RingOps ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = ( GId ‘ 𝐻 ) ) → ( Idl ‘ 𝑅 ) = { { 𝑍 } , 𝑋 } ) |
63 |
62
|
adantrl |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = ( GId ‘ 𝐻 ) ) ) → ( Idl ‘ 𝑅 ) = { { 𝑍 } , 𝑋 } ) |
64 |
6 63
|
sylbi |
⊢ ( 𝑅 ∈ DivRingOps → ( Idl ‘ 𝑅 ) = { { 𝑍 } , 𝑋 } ) |