Metamath Proof Explorer


Theorem intidl

Description: The intersection of a nonempty collection of ideals is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion intidl ( ( 𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → 𝐶 ∈ ( Idl ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 intssuni ( 𝐶 ≠ ∅ → 𝐶 𝐶 )
2 1 3ad2ant2 ( ( 𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → 𝐶 𝐶 )
3 ssel2 ( ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ 𝑖𝐶 ) → 𝑖 ∈ ( Idl ‘ 𝑅 ) )
4 eqid ( 1st𝑅 ) = ( 1st𝑅 )
5 eqid ran ( 1st𝑅 ) = ran ( 1st𝑅 )
6 4 5 idlss ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) → 𝑖 ⊆ ran ( 1st𝑅 ) )
7 3 6 sylan2 ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ 𝑖𝐶 ) ) → 𝑖 ⊆ ran ( 1st𝑅 ) )
8 7 anassrs ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ 𝑖𝐶 ) → 𝑖 ⊆ ran ( 1st𝑅 ) )
9 8 ralrimiva ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → ∀ 𝑖𝐶 𝑖 ⊆ ran ( 1st𝑅 ) )
10 9 3adant2 ( ( 𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → ∀ 𝑖𝐶 𝑖 ⊆ ran ( 1st𝑅 ) )
11 unissb ( 𝐶 ⊆ ran ( 1st𝑅 ) ↔ ∀ 𝑖𝐶 𝑖 ⊆ ran ( 1st𝑅 ) )
12 10 11 sylibr ( ( 𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → 𝐶 ⊆ ran ( 1st𝑅 ) )
13 2 12 sstrd ( ( 𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → 𝐶 ⊆ ran ( 1st𝑅 ) )
14 eqid ( GId ‘ ( 1st𝑅 ) ) = ( GId ‘ ( 1st𝑅 ) )
15 4 14 idl0cl ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) → ( GId ‘ ( 1st𝑅 ) ) ∈ 𝑖 )
16 3 15 sylan2 ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ 𝑖𝐶 ) ) → ( GId ‘ ( 1st𝑅 ) ) ∈ 𝑖 )
17 16 anassrs ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ 𝑖𝐶 ) → ( GId ‘ ( 1st𝑅 ) ) ∈ 𝑖 )
18 17 ralrimiva ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → ∀ 𝑖𝐶 ( GId ‘ ( 1st𝑅 ) ) ∈ 𝑖 )
19 fvex ( GId ‘ ( 1st𝑅 ) ) ∈ V
20 19 elint2 ( ( GId ‘ ( 1st𝑅 ) ) ∈ 𝐶 ↔ ∀ 𝑖𝐶 ( GId ‘ ( 1st𝑅 ) ) ∈ 𝑖 )
21 18 20 sylibr ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → ( GId ‘ ( 1st𝑅 ) ) ∈ 𝐶 )
22 21 3adant2 ( ( 𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → ( GId ‘ ( 1st𝑅 ) ) ∈ 𝐶 )
23 vex 𝑥 ∈ V
24 23 elint2 ( 𝑥 𝐶 ↔ ∀ 𝑖𝐶 𝑥𝑖 )
25 vex 𝑦 ∈ V
26 25 elint2 ( 𝑦 𝐶 ↔ ∀ 𝑖𝐶 𝑦𝑖 )
27 r19.26 ( ∀ 𝑖𝐶 ( 𝑥𝑖𝑦𝑖 ) ↔ ( ∀ 𝑖𝐶 𝑥𝑖 ∧ ∀ 𝑖𝐶 𝑦𝑖 ) )
28 4 idladdcl ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑥𝑖𝑦𝑖 ) ) → ( 𝑥 ( 1st𝑅 ) 𝑦 ) ∈ 𝑖 )
29 28 ex ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) → ( ( 𝑥𝑖𝑦𝑖 ) → ( 𝑥 ( 1st𝑅 ) 𝑦 ) ∈ 𝑖 ) )
30 3 29 sylan2 ( ( 𝑅 ∈ RingOps ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ 𝑖𝐶 ) ) → ( ( 𝑥𝑖𝑦𝑖 ) → ( 𝑥 ( 1st𝑅 ) 𝑦 ) ∈ 𝑖 ) )
31 30 anassrs ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ 𝑖𝐶 ) → ( ( 𝑥𝑖𝑦𝑖 ) → ( 𝑥 ( 1st𝑅 ) 𝑦 ) ∈ 𝑖 ) )
32 31 ralimdva ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → ( ∀ 𝑖𝐶 ( 𝑥𝑖𝑦𝑖 ) → ∀ 𝑖𝐶 ( 𝑥 ( 1st𝑅 ) 𝑦 ) ∈ 𝑖 ) )
33 ovex ( 𝑥 ( 1st𝑅 ) 𝑦 ) ∈ V
34 33 elint2 ( ( 𝑥 ( 1st𝑅 ) 𝑦 ) ∈ 𝐶 ↔ ∀ 𝑖𝐶 ( 𝑥 ( 1st𝑅 ) 𝑦 ) ∈ 𝑖 )
35 32 34 syl6ibr ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → ( ∀ 𝑖𝐶 ( 𝑥𝑖𝑦𝑖 ) → ( 𝑥 ( 1st𝑅 ) 𝑦 ) ∈ 𝐶 ) )
36 27 35 syl5bir ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → ( ( ∀ 𝑖𝐶 𝑥𝑖 ∧ ∀ 𝑖𝐶 𝑦𝑖 ) → ( 𝑥 ( 1st𝑅 ) 𝑦 ) ∈ 𝐶 ) )
37 36 expdimp ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ∀ 𝑖𝐶 𝑥𝑖 ) → ( ∀ 𝑖𝐶 𝑦𝑖 → ( 𝑥 ( 1st𝑅 ) 𝑦 ) ∈ 𝐶 ) )
38 26 37 syl5bi ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ∀ 𝑖𝐶 𝑥𝑖 ) → ( 𝑦 𝐶 → ( 𝑥 ( 1st𝑅 ) 𝑦 ) ∈ 𝐶 ) )
39 38 ralrimiv ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ∀ 𝑖𝐶 𝑥𝑖 ) → ∀ 𝑦 𝐶 ( 𝑥 ( 1st𝑅 ) 𝑦 ) ∈ 𝐶 )
40 eqid ( 2nd𝑅 ) = ( 2nd𝑅 )
41 4 40 5 idllmulcl ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑥𝑖𝑧 ∈ ran ( 1st𝑅 ) ) ) → ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝑖 )
42 41 anass1rs ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ran ( 1st𝑅 ) ) ∧ 𝑥𝑖 ) → ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝑖 )
43 42 ex ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ran ( 1st𝑅 ) ) → ( 𝑥𝑖 → ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝑖 ) )
44 43 an32s ( ( ( 𝑅 ∈ RingOps ∧ 𝑧 ∈ ran ( 1st𝑅 ) ) ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) → ( 𝑥𝑖 → ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝑖 ) )
45 3 44 sylan2 ( ( ( 𝑅 ∈ RingOps ∧ 𝑧 ∈ ran ( 1st𝑅 ) ) ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ 𝑖𝐶 ) ) → ( 𝑥𝑖 → ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝑖 ) )
46 45 an4s ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ ran ( 1st𝑅 ) ∧ 𝑖𝐶 ) ) → ( 𝑥𝑖 → ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝑖 ) )
47 46 anassrs ( ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ran ( 1st𝑅 ) ) ∧ 𝑖𝐶 ) → ( 𝑥𝑖 → ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝑖 ) )
48 47 ralimdva ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ran ( 1st𝑅 ) ) → ( ∀ 𝑖𝐶 𝑥𝑖 → ∀ 𝑖𝐶 ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝑖 ) )
49 48 imp ( ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ran ( 1st𝑅 ) ) ∧ ∀ 𝑖𝐶 𝑥𝑖 ) → ∀ 𝑖𝐶 ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝑖 )
50 ovex ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ V
51 50 elint2 ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑖𝐶 ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝑖 )
52 49 51 sylibr ( ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ran ( 1st𝑅 ) ) ∧ ∀ 𝑖𝐶 𝑥𝑖 ) → ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝐶 )
53 4 40 5 idlrmulcl ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑥𝑖𝑧 ∈ ran ( 1st𝑅 ) ) ) → ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝑖 )
54 53 anass1rs ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ran ( 1st𝑅 ) ) ∧ 𝑥𝑖 ) → ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝑖 )
55 54 ex ( ( ( 𝑅 ∈ RingOps ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ran ( 1st𝑅 ) ) → ( 𝑥𝑖 → ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝑖 ) )
56 55 an32s ( ( ( 𝑅 ∈ RingOps ∧ 𝑧 ∈ ran ( 1st𝑅 ) ) ∧ 𝑖 ∈ ( Idl ‘ 𝑅 ) ) → ( 𝑥𝑖 → ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝑖 ) )
57 3 56 sylan2 ( ( ( 𝑅 ∈ RingOps ∧ 𝑧 ∈ ran ( 1st𝑅 ) ) ∧ ( 𝐶 ⊆ ( Idl ‘ 𝑅 ) ∧ 𝑖𝐶 ) ) → ( 𝑥𝑖 → ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝑖 ) )
58 57 an4s ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ ran ( 1st𝑅 ) ∧ 𝑖𝐶 ) ) → ( 𝑥𝑖 → ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝑖 ) )
59 58 anassrs ( ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ran ( 1st𝑅 ) ) ∧ 𝑖𝐶 ) → ( 𝑥𝑖 → ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝑖 ) )
60 59 ralimdva ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ran ( 1st𝑅 ) ) → ( ∀ 𝑖𝐶 𝑥𝑖 → ∀ 𝑖𝐶 ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝑖 ) )
61 60 imp ( ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ran ( 1st𝑅 ) ) ∧ ∀ 𝑖𝐶 𝑥𝑖 ) → ∀ 𝑖𝐶 ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝑖 )
62 ovex ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ V
63 62 elint2 ( ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝐶 ↔ ∀ 𝑖𝐶 ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝑖 )
64 61 63 sylibr ( ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ran ( 1st𝑅 ) ) ∧ ∀ 𝑖𝐶 𝑥𝑖 ) → ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝐶 )
65 52 64 jca ( ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ 𝑧 ∈ ran ( 1st𝑅 ) ) ∧ ∀ 𝑖𝐶 𝑥𝑖 ) → ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝐶 ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝐶 ) )
66 65 an32s ( ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ∀ 𝑖𝐶 𝑥𝑖 ) ∧ 𝑧 ∈ ran ( 1st𝑅 ) ) → ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝐶 ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝐶 ) )
67 66 ralrimiva ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ∀ 𝑖𝐶 𝑥𝑖 ) → ∀ 𝑧 ∈ ran ( 1st𝑅 ) ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝐶 ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝐶 ) )
68 39 67 jca ( ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) ∧ ∀ 𝑖𝐶 𝑥𝑖 ) → ( ∀ 𝑦 𝐶 ( 𝑥 ( 1st𝑅 ) 𝑦 ) ∈ 𝐶 ∧ ∀ 𝑧 ∈ ran ( 1st𝑅 ) ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝐶 ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝐶 ) ) )
69 68 ex ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → ( ∀ 𝑖𝐶 𝑥𝑖 → ( ∀ 𝑦 𝐶 ( 𝑥 ( 1st𝑅 ) 𝑦 ) ∈ 𝐶 ∧ ∀ 𝑧 ∈ ran ( 1st𝑅 ) ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝐶 ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝐶 ) ) ) )
70 24 69 syl5bi ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → ( 𝑥 𝐶 → ( ∀ 𝑦 𝐶 ( 𝑥 ( 1st𝑅 ) 𝑦 ) ∈ 𝐶 ∧ ∀ 𝑧 ∈ ran ( 1st𝑅 ) ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝐶 ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝐶 ) ) ) )
71 70 ralrimiv ( ( 𝑅 ∈ RingOps ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → ∀ 𝑥 𝐶 ( ∀ 𝑦 𝐶 ( 𝑥 ( 1st𝑅 ) 𝑦 ) ∈ 𝐶 ∧ ∀ 𝑧 ∈ ran ( 1st𝑅 ) ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝐶 ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝐶 ) ) )
72 71 3adant2 ( ( 𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → ∀ 𝑥 𝐶 ( ∀ 𝑦 𝐶 ( 𝑥 ( 1st𝑅 ) 𝑦 ) ∈ 𝐶 ∧ ∀ 𝑧 ∈ ran ( 1st𝑅 ) ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝐶 ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝐶 ) ) )
73 4 40 5 14 isidl ( 𝑅 ∈ RingOps → ( 𝐶 ∈ ( Idl ‘ 𝑅 ) ↔ ( 𝐶 ⊆ ran ( 1st𝑅 ) ∧ ( GId ‘ ( 1st𝑅 ) ) ∈ 𝐶 ∧ ∀ 𝑥 𝐶 ( ∀ 𝑦 𝐶 ( 𝑥 ( 1st𝑅 ) 𝑦 ) ∈ 𝐶 ∧ ∀ 𝑧 ∈ ran ( 1st𝑅 ) ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝐶 ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝐶 ) ) ) ) )
74 73 3ad2ant1 ( ( 𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → ( 𝐶 ∈ ( Idl ‘ 𝑅 ) ↔ ( 𝐶 ⊆ ran ( 1st𝑅 ) ∧ ( GId ‘ ( 1st𝑅 ) ) ∈ 𝐶 ∧ ∀ 𝑥 𝐶 ( ∀ 𝑦 𝐶 ( 𝑥 ( 1st𝑅 ) 𝑦 ) ∈ 𝐶 ∧ ∀ 𝑧 ∈ ran ( 1st𝑅 ) ( ( 𝑧 ( 2nd𝑅 ) 𝑥 ) ∈ 𝐶 ∧ ( 𝑥 ( 2nd𝑅 ) 𝑧 ) ∈ 𝐶 ) ) ) ) )
75 13 22 72 74 mpbir3and ( ( 𝑅 ∈ RingOps ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ ( Idl ‘ 𝑅 ) ) → 𝐶 ∈ ( Idl ‘ 𝑅 ) )